

Feeding Infants with Lung Function Impairment

Presenters:

Liz Bacon, MS, RD, LD, Medical Science Liaison, Nutricia North America Jennifer Daughtry, MPH, RD, CSPCC Senior Clinical Dietitian Houston, TX Live event date: January 17, 2024 - *Recording on <u>NutriciaLearningCenter.com</u>*

Learning Objectives:

- Identify challenges when feeding infants with lung function impairment
- Review infant critical care nutrition management guidelines
- Describe evidence on energy- and nutrient-dense formula in infants with acute exacerbation of lung condition
- Review case study of energy- and nutrient-dense formula use in an infant with Bronchopulmonary Dysplasia

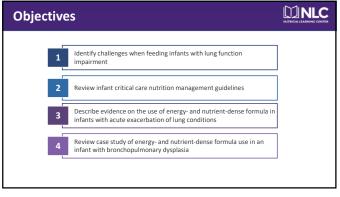
Notes:

©2024 Nutricia North America – Nurses may claim CE credit for this webinar. RDs may claim CE credit for this webinar through 1/17/2027. To obtain a certificate of attendance: 1) Complete this <u>survey</u> (https://nlc.pub/Lunghealth); 2) Note event code at end of survey; and 3) enter event code at <u>NutriciaLearningCenter.com</u> in 'My NLC Dashboard' to add certificate to your profile.

Nutricia North America supports the use of human milk wherever possible.

©2024 Nutricia North America – Nurses may claim CE credit for this webinar. RDs may claim CE credit for this webinar through 1/17/2027. To obtain a certificate of attendance: 1) Complete this <u>survey</u> (https://nlc.pub/Lunghealth); 2) Note event code at end of survey; and 3) enter event code at <u>NutriciaLearningCenter.com</u> in 'My NLC Dashboard' to add certificate to your profile.

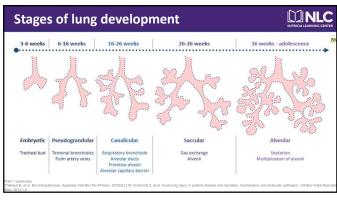
CE-eligible for 1 credit for dietitians and nurses in the US

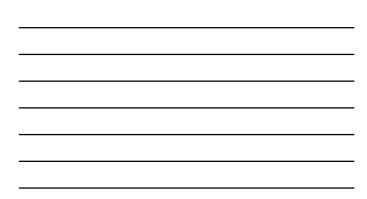


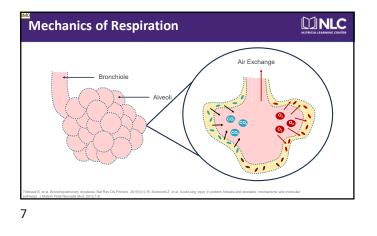
1

Disclosures	
Jennifer Daughtry, MPH, RD, CSPCC honorariu by Nutricia	ım provided
None pose any conflict of interest for this pre	esentation
Liz Bacon MS, RDN, LDN is employed by Nutricia North America Science Liaison	a as a Medical
The opinions reflected in this presentation are a speaker and independent of Nutricia North .	
2	

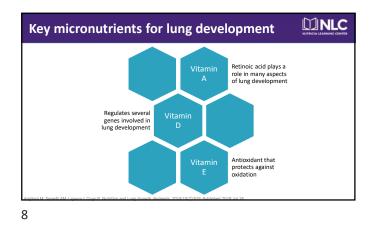
Nutricia North America supports the use of human milk wherever possible.

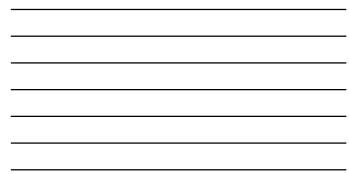

CE-eligible for 1 credit for dietitians and nurses in the US




Review of Normal Lung Function and Development

5

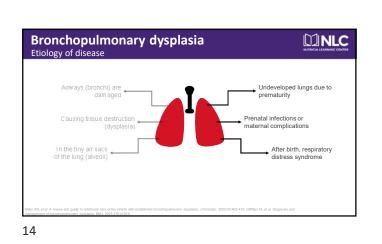




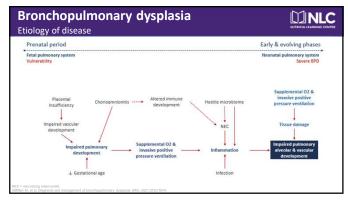
CE-eligible for 1 credit for dietitians and nurses in the US

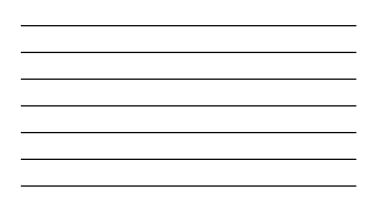


CE-eligible for 1 credit for dietitians and nurses in the US

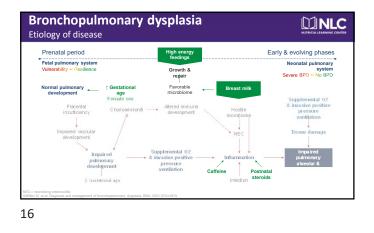

Comm	on lung conditions in infancy	
R	Bronchopulmonary Dysplasia	
Øð	Pulmonary Hypertension	
<i>6</i> B	Respiratory Syncytial Virus	
10		

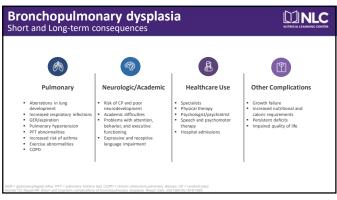
POLL #1 What pediatric lung conditions do you currently see in your practice? Bronchopulmonary dysplasia (BPD) Pulmonary Hypertension (PH) Respiratory Syncytial Virus (RSV) I do not currently see patients with these conditions 11




CE-eligible for 1 credit for dietitians and nurses in the US

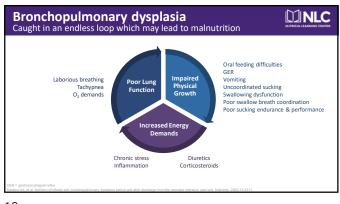
		monary dysplasia	
Ne	ed fo	At least 28 days of <21% O₂, or r continued supplemental O₂ at ≥36 weeks postmenstru age	al
Med	_	No oxygen requirement	
		< 30% supplement oxygen ≥30% supplemental oxygen and/or the need for positive pressure ventilation	
Miller AN, et al. A review and guide to	o rutritional c	are of the infants with established bronchopulmonary dysplasia. J Perivatol. 2023;43:402-416.	

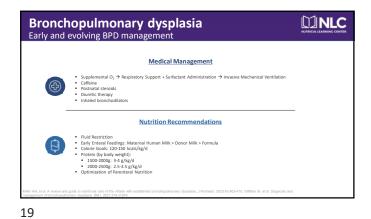




15

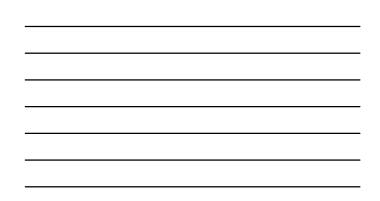
CE-eligible for 1 credit for dietitians and nurses in the US




17

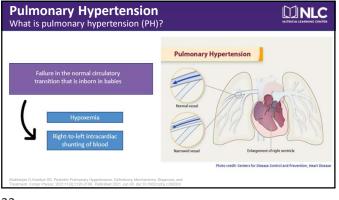
18

CE-eligible for 1 credit for dietitians and nurses in the US

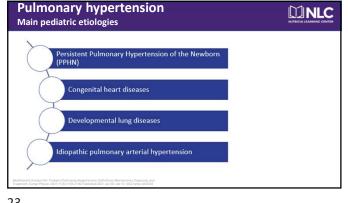


 Bronchopulmonary dysplasia

 Established BPD nutrition management

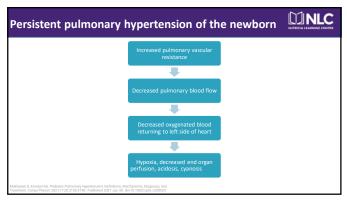

 Fluids

 No existing recommendations
 Studies suggest restrictive fluid intake may decrease BPD
 120-150 kcals/kg/d
 No existing recommendations
 Studies suggest infants with BPD fed a nutrient-enriched formula with added protein experience
 Improved weight gain, linear growth, lean mass, and greater bone mass
 Bonoved weight gain, linear growth, lean mass, and greater bone mass
 Intercommended (if necessary): MCT oil and protein
 Not recommended: carbohydrate (i.e. glucose polymers)

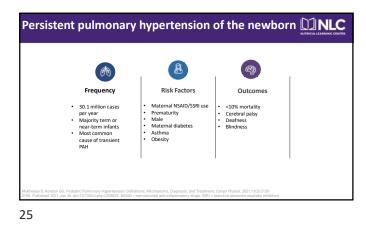


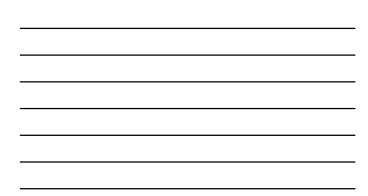
Common lung conditions in infancy	
Bronchopulmonary Dysplasia	
Pulmonary Hypertension	
Respiratory Syncytial Virus	

CE-eligible for 1 credit for dietitians and nurses in the US

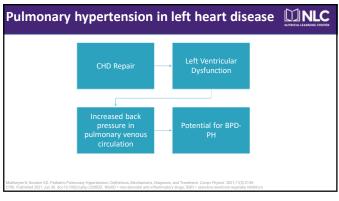


22



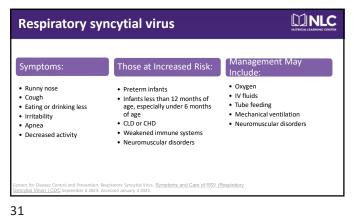

23

_			
-			
-			
-			
-			
-			
-			


CE-eligible for 1 credit for dietitians and nurses in the US

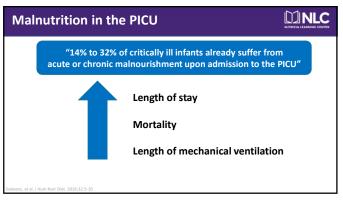
Persistent pulmonary hypertension of the newborn DINLC Meconium Aspiration Diaphragmatic Hernia Syndrome • Respiratory anomalies • Asphyxia Alveolar capillary • Sepsis dysplasia • Transient tachypnea of Surfactant protein defects newborn Trisomy 21 • Effusions/air leak Inborn errors of Respiratory distress metabolis syndrome • Cardiac defects ha S. Pathophysiology and Management of Persis 2021;48(3):595-618. doi:10.1016/j.clp.2021.05.00

26

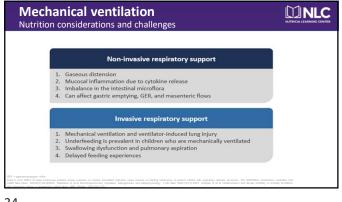


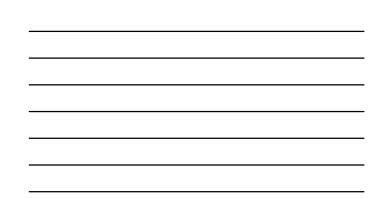
Pulmonary hypertension - developmental lung diseases	
Significant cardiac complication	In infants with BPD-PH vs BPD non-PH: • Lower body weight + FOC at 18-24 months • Lower cognitive, motor and developmental scores at 18-24 months • Poorer weight gain after discharge • Increased caloric expenditure • Fluid restriction
Droi EX, Shin SH, Kim EX, Kim HS, Developmental outcomes of perterm infants with branchagular sometical gas, <i>BBC Peakar</i> 2019;81(9):26, FABIlined 2019; Jun 7, doi:10.1106/s12807019-1400 2019; 2019;2019;2019;2019;2019;2019;2019;2019;	Diuretic therapy more graduate associated pulmonary hypertension at 15-24 months of

Comn	non lung conditions in infancy	
6ª	Bronchopulmonary Dysplasia	
Ŕ	Pulmonary Hypertension	
Æ	Respiratory Syncytial Virus	
29		

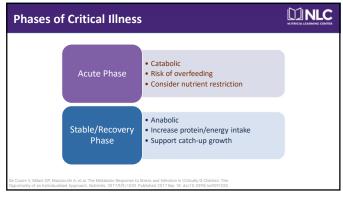


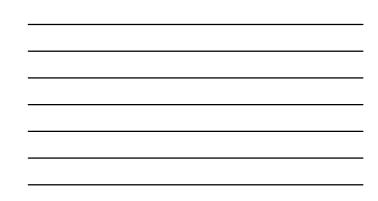
Respiratory syncytial virus What is respiratory syncytial virus (RSV)?	
Highly contagious seasonal respiratory virus	
Most common cause of bronchiolitis and pneumonia in children younger than 1 year of age.	
2-3 out of 100 infants may require hospitalization	
Shi T, Mollinser DA, O'Brien KL, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory synchial virus in young children in 2015. a systematic review and modeling study. Jancet. 2012 Sep 2:300110581546-985. Ecute 2017 Jul 7.	

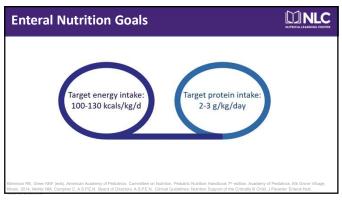


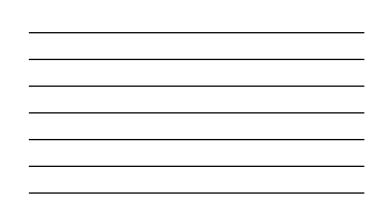

CRITICAL CARE NUTRITION MANAGEMENT CONSIDERATIONS

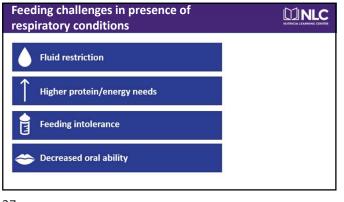
32




CE-eligible for 1 credit for dietitians and nurses in the US

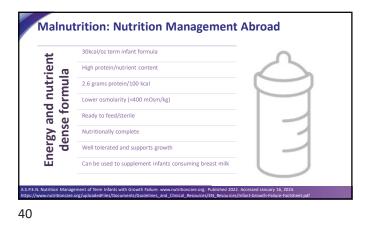



34

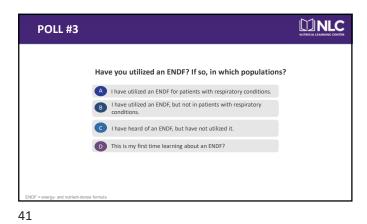


35

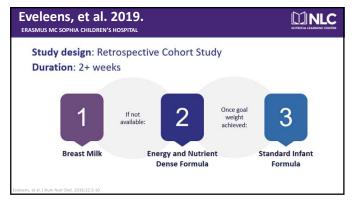
CE-eligible for 1 credit for dietitians and nurses in the US



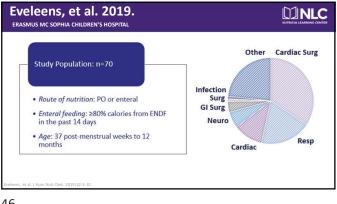
37

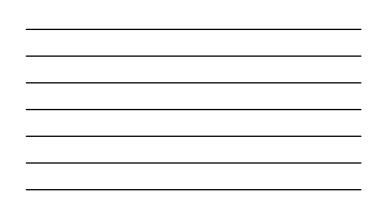

POLL #2	
What feeding challenges do you currently experience patients who have respiratory conditions? (Select all t	
A Fluid restriction	
B Higher protein/energy needs	
C Feeding intolerance	
D Decreased oral ability	
E I don't currently work with this population	
38	

CE-eligible for 1 credit for dietitians and nurses in the US

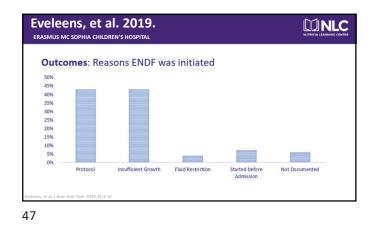

	Nutrients providee	d at 130 ml/kg/day	
Nutrient	20 kcal/oz SIF	24 kcal/oz SIF	30 kcal/oz ENDF
Energy (kcals/kg/day)	87	104	130
Protein (g/kg/day)	1.8 (1.4 g/dL)	2.2 (1.7 g/dL)	3.4 (2.6 g/dL)

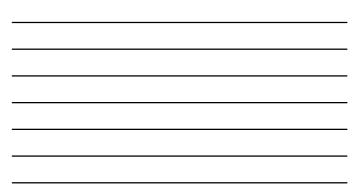
astfe	edin	g supplemen	itation		
Rati		Characteristics, if blended			
4:1	UT.	22 kcal/fl oz	~1:	2	071 1/0
Breast milk	ENDF	0.73 kcal/mL			27 kcal/fl oz
Raises pr	otein intake b	y -+0.4 g/100 mL1	Breast milk	ENDF	0.90 kcal/mL
~295 m0	Dsm/kg1	-86.6% Free water!	Raises	rotein intake l	ov ~+11 o/100 mL1
3:2	2	24 kcal/fl oz	~335 m(~85.7% Free water!
Breast milk	ENDF	0.80 kcal/mL	1:		201 1/2
Raises p	rotein intake b	y ~+0.7 g/100 mL1		<u>.</u>	28 kcal/fl oz
-310 mC	Dsm/kg1	~862% Free water ¹	Breast milk	ENDF	0.93 kcal/mL
2:3	3	26 kcal/fl oz	Raises r	rotein intake t	7 ~+1.3 a/100 mL ¹
Breast milk	ENDF	0.87 kcal/mL	~345 m	Osm/kg ^t	~85.4% Free water!
Raises p	rotein intake b	zy -+1.0 g/100 mL!			
~330 m(Dsm/ka ¹	~85.8% Free water ¹			

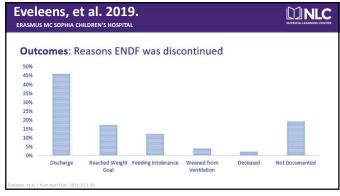

43

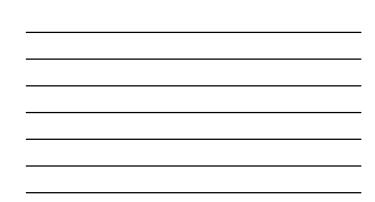

Review of evidence: energy and nutrient-dense formula (ENDF)

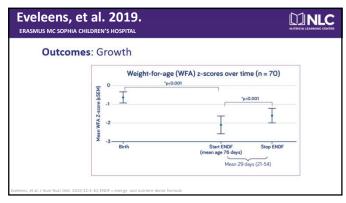
44




45

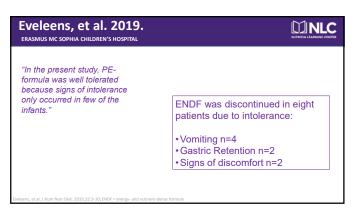



46





Eveleens, et al. 2019. ERASMUS MC SOPHIA CHILDREN'S HOSPITAL		
Outcomes: Nutritional Intake		
Route of Nutrition:	Nutrient Intake: • Energy: 104.6±19.4 kcal/kg/d	
• Post-pyloric: 45 (64%)	 Energy: 104.0±19.4 kcal/kg/d Protein: 2.72±0.50g/kg/d 	
 Feeding strategy 		
 Continuous: 27 (39%) Bolus: 10 (14%) 		
• Both: 33 (47%)		
veleens, et al. J Hum Nutr Diet. 2019;32:3-10		



49

50

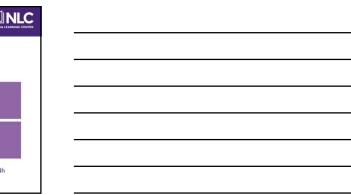
Protein metabolism using energy and nutrient dense formula. van Waardenburg DA, de Betue CT, van Goudoever, et al. Clin Nutr. 2009;28:249-255. de Betue CT, van Waardenburg DA, Deutz NE, et al. Arch Dis Child. 2011;96:817-822. de Betue CT, Joosten KF, Deutz NE, et al. Am J Clin Nutr. 2013;98:907-916.

 Protein Metabolism MAASTRICH UNIVERSITY MEDICAL CENTER ERASMUS MC SOPHIA CHILDREN'S HOSPITAL

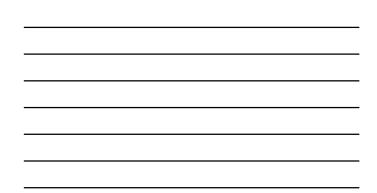
 Study design: Randomized controlled trial, double-blinded Duration: 5-days

 Intervention (n=8)

 Energy and nutrient dense formula (ENDF)
 1kcal/mL
 10.4% protein-energy ratio

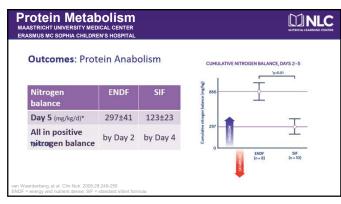

 Control (n=10)

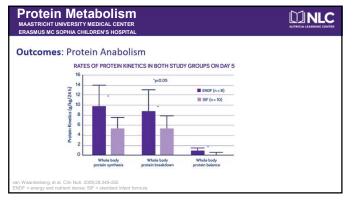
 Standard infant formula (SIF)
 0.67kcal/mL
 8.0% protein-energy ratio


 Initiation: 25% target volume

 Advance: 25% target volume
 Advance: 25% target volume
 I Advance: 25% target volume 012H
 Target Volume: 130mL/kg/24h

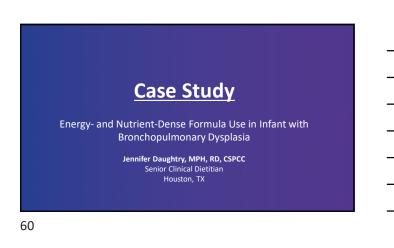
54

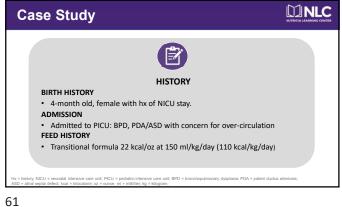

Protein Metabolism maastricht university medical center erasmus mc sophia children's hospital	
Study Population: n=18	
 Route of nutrition: enteral Age: 4 weeks to 12 months Gestation: term or preterm, but >40 weeks postmenstrual age Diagnosis: respiratory syncytial virus 	**** **
van Waardenberg, et al. Clin Nutr. 2009;28:249-255. de Betue, et al. Arch Dis Child. 2011;96:817-6 2013;98:907-918.	22. de Betue, et al. Am J Clin Nutr.

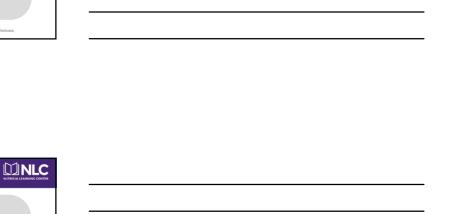

- -

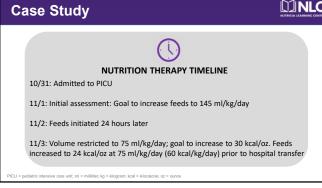
Outcomes: Nu	trient Int	ake and 1	Folerance		
Intake	ENDF	SIF	Tolerance	ENDF	SIF
Volume		ference	Stooling		erence
E nergy (kcal/kg/d)*	112±19	82±4	Emesis	No diff	ference
Protein (g/kg/d)*	2.8±0.3	1.5±0.1			

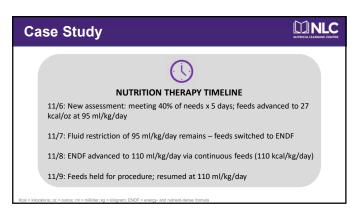
56

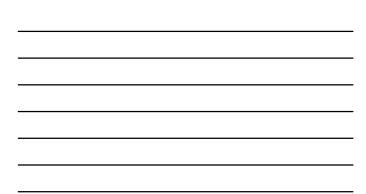

CE-eligible for 1 credit for dietitians and nurses in the US


58

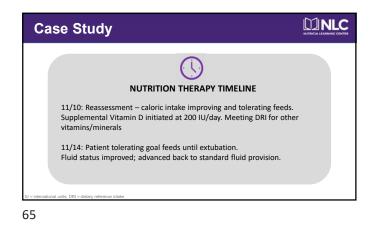


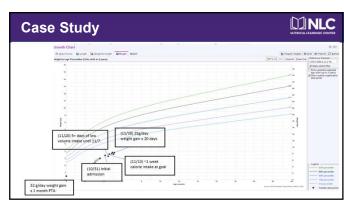



CE-eligible for 1 credit for dietitians and nurses in the US

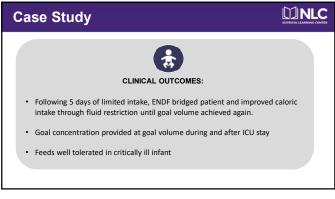


62

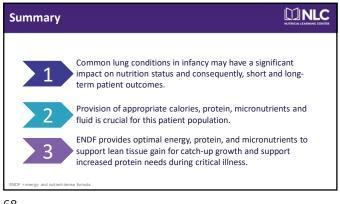


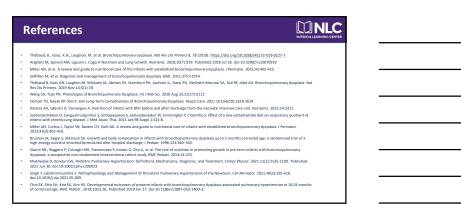

CE-eligible for 1 credit for dietitians and nurses in the US

se Stud	у			
Formula	Volume (ml/kg/day)	Energy kcal/kg/day)	Protein (grams/kg/day)	
Transitional Formula 24 kcal/oz	75	60	1.6	
Transitional Formula 27 kcal/oz	95	85	2.4	
ENDF 30 kcal/oz	95	95	2.5	
ENDF 30 kcal/oz	110	110	2.9	

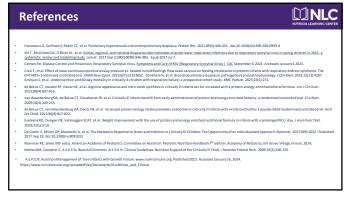


64




66

67



68

©2024 Nutricia North America

CE-eligible for 1 credit for dietitians and nurses in the US

70

71

72