The role of Gut Microbiota in Allergic Disease

Christina E West
MD, PhD
A/Professor, Pediatric allergist
Clinical Sciences, Pediatrics
Umeå University, Sweden
Disclosures

I have received research support from Arla Foods

I have received lecture fees and travel support from Nutricia, HiPP, Nestlé Nutrition and Arla Foods

I receive royalties from UptoDate
• Development of early life gut microbiota and immune tolerance

• Dysbiosis in early life microbiota and allergic diseases

• Current evidence on pre/pro/synbiotics for allergy management

• Results from the ASSIGN trial
Microbial imprinting may start in utero

- DNA from bacterial taxa in the feto-placental unit
- Microbes may travel via the blood stream from the oral cavity to the placenta (Aagard et al, Sci Transl Med 2014)
- Translocation over the gut epithelium also suggested
- Transmission of administered labeled bacterial strains from the mother to her offspring in mice (Jimenez et al, Res Microbiol 2008)
Postnatal establishment of the gut microbiota

- **Anaerobes** (Bifidobacteria, Bacteroides, Clostridium spp)
- **Aerobes and facultative anaerobes** (E. coli, Enterococcus spp, α-hemolytic streptococci, Staphylococcus aureus)
- Unculturable bacteria
- Increase in microbial diversity

- Breastfeeding
- Weaning
- Complementary foods

- Delivery/Birth
- Age (yrs) 3

Genetics and primary exposure

Modified from Salminen S, 2005
Predictable microbiome development

- The early gut microbiota abundant in bifidobacteria
- Microbes that characterize early stages of development are more capable of metabolizing nutrients associated with breast feeding
- Later stages have a gut microbiota enriched in genes that can help to digest solid foods

Caesarean section delivery

↑ Staphylococcus

↑ Clostridium difficile

↓ Bacteroides

↓ Diversity

Vaginal delivery

↑ Lactobacillus

↑ Prevotella

↑ Sneathia

• Caesarean section delivery associated with increased risk of allergic and autoimmune disease (Kristensen K et al, JACI 2016;137:587-90)

Maternal gut
Bifidobacterium
Bacteroides
E. coli

Breastfeeding, vagina
Lactobacillus
Streptococcus

Skin
Staphylococcus

Environment/food
Clostridium difficile
Klebsiella
Enterobacter

Gut microbiota changes faster than our immune system can adapt to

Homeostasis

• Balance between the gut microbiota and the host

• Major functions of gut microbiota
 – Metabolic
 • Fermentation of non-digestible dietary residue
 – Trophic
 • Gut integrity
 • Development of the immune system
 – Protective
 • Protects against pathogens

Dysbiosis

• Gut microbial imbalance
 – May impact both composition and function

• Dysbiosis has been associated with development of allergic diseases in infants and children

• Microbiota establishment is influenced by diet and environmental exposures perinatally and in childhood
• Parallels the development of innate and adaptive immune pathways
 - Short-chain fatty acid production and induction of Treg cells
• Low biodiversity/dysbiosis
 - IgE production and pro-inflammatory responses

Dysbiosis in allergic disease

- Reduced relative abundance (RA) and α-diversity of Bacteroidetes in infancy before onset of IgE-associated eczema and asthma

 Abrahamsson, Jenmalm et al JACI 2012 and Clin Exp Allergy 2014

- Reduced RA of *Ruminococcaceae* at 1yr, 5 times more likely in food-sensitized infants in the CHILD cohort study

 Azad, Kozyrskyj et al Clin Exp Allergy 2015

- Reduced RA of *Ruminococcaceae* at 1 week preceded onset of IgE-ass eczema; the RA of *Ruminococcus* was inversely correlated with inflammatory responses

 West, Prescott et al, Clin Exp Allergy 2015
Toll-like receptors (TLRs)- ancient “gate-keepers” in innate immunity

- Expressed on epithelial and endothelial cells, leukocyte subsets in blood
- Sense conserved structural components of microbes
- T regulatory cells (Tregs) recently shown to express TLRs
- TLR activation can increase or decrease the suppressor activity of T regulatory cells, thus providing an important link between innate and adaptive immunity
Innate immune responses in allergic disease

Increased inflammatory responses following Toll-like receptor (TLR)-activation

Tulic JACI 2011;122:391

Immature T-helper 1 (Th1) function

Tulic JACI 2011;122:391

Immature T regulatory function

Smith JACI 2008;121:1460

Schaub JACI 2008;121:1491
Lower abundance of *Ruminococcaceae* in food sensitization and IgE-associated eczema

A reduction of potentially immune-modulatory bacteria (ruminococci) is associated with aberrant innate immune responses and increased risk of atopic eczema

West et al, 2015

A reduction in the abundance of *Ruminococcaceae* at 1 yr, was 5 times more likely in food-sensitized infants, independently of

- Delivery mode
- Breastfeeding
- Antimiotics exposure

Azad et al, 2015

- *Ruminococci produce bacteriocins, e.g. Ruminococcin A, which can inhibit the development of Clostridium species*

- *Ruminococci can degrade fiber, increase SCFA production*
Early gut microbiome composition associated with resolution of CMA

- Consortium of Food Allergy observational study (N=226 children, enrolled in infancy)
- CMA (IgE-mediated)
- Stool sampled at entry
- Followed until 8 years
- Milk allergy resolved in 128 children (56.6%) by 8 years of age

Supinda Bunyavanich, Nan Shen, Alexander Grishin, Robert Wood, Wesley Burks, Peter Dawson, Stacie M. Jones, Donald Y.M. Leung, Hugh Sampson, Scott Sicherer, Jose C. Clemente

Early-life gut microbiome composition and milk allergy resolution

Journal of Allergy and Clinical Immunology, Volume 138, Issue 4, 2016, 1122–1130 http://dx.doi.org/10.1016/j.jaci.2016.03.041
Distinct gut microbiome composition associated with milk allergy resolution. Taxa within Clostridia and Firmicutes were enriched in children sampled at age 3 to 6 months with milk allergy resolution versus milk allergy persistence by age 8 years.

Supinda Bunyavanich, Nan Shen, Alexander Grishin, Robert Wood, Wesley Burks, Peter Dawson, Stacie M. Jones, Donald Y.M. Leung, Hugh Sampson, Scott Sicherer, Jose C. Clemente

Early-life gut microbiome composition and milk allergy resolution

Journal of Allergy and Clinical Immunology, Volume 138, Issue 4, 2016, 1122–1130
http://dx.doi.org/10.1016/j.jaci.2016.03.041
Dysbiosis in non-communicable diseases

Definitions

• **Prebiotics**- “A dietary prebiotic is a selectively fermented ingredient that results in specific changes, in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health” (ISAAP 2008)

Commonly used prebiotics in infant formula: galacto- and fructooligosaccharides and their combination 9:1
Prebiotics

• Oligosaccharides are the third largest fraction in human milk and confer many potential benefits in breastfed infants
• Current commercially available prebiotics are less complex
• Prebiotics have the potential to promote gut colonization with bifidobacteria; some studies have demonstrated immune-stimulating effects
• Increases the production of short-chain fatty acids, with nutritive and anti-inflammatory effects

Definitions

- **Probiotics** “Live microorganisms, which when administered in adequate amounts confer a health benefit on the host” (FAO/WHO 2002)

 Commonly used probiotics are strains of bifidobacteria and lactobacilli
a) Block pathogen entry
b) Create a mucus barrier
c) Maintain intestinal integrity
d) Produce antimicrobial factors
e) Stimulate innate immune system via dendritic cells
f) Stimulate/dampen innate immune response

Probiotics—“live microorganisms which, when administered in adequate amounts confer a health benefit on the host”

WHO/FAO

Synbiotics

- Synbiotics - combination of pre- and probiotics
- Anticipated to have more global effects on colonization
- Meta-analysis eczema management (six studies, 369 children): SCORAD -6.56 (95% CI -11.43 to -1.68; P=0.008)
- “the effect most evident in children >1 yr and if the synbiotic contained a mix of bacterial strains”

Current recommendations

International expert bodies do not generally recommend pre- pro- or synbiotics for management or prevention of allergic disease.

Probiotics: “there is a likely net benefit from using probiotics resulting primarily from prevention of eczema” in infants at high risk of allergic disease.
WAO guideline panel 2015

Prebiotics: “suggests using prebiotic supplementation in not-exclusively breastfed infants and not using prebiotic supplementation in exclusively breastfed infants” for allergy prevention.
WAO guideline panel 2016

Recommendations conditional, based on very low certainty of the evidence.

Significant heterogeneity between studies
• The gut microbiota develops to a complex and diverse ecosystem during the first years of life

• Aberrant intestinal colonization and reduced biodiversity have been associated with allergic diseases

• Pre- pro- and synbiotics have the potential to promote healthy gut colonization and immune maturation in allergic disease

• To date, significant heterogeneity between conducted studies precludes general recommendation on their use
Aim: Clinical study to assess the effect of an Amino Acid based Formula (AAF) with a synbiotic blend on gut microbiota and clinical symptoms in suspected GI Non-IgE mediated CMA

- Control product: Commercially available AAF
- Test product: AAF + synbiotics*; mixture of short and longchain fructooligosaccharides, *Bifidobacterium breve* M-16V

Studies suggest eHF + probiotics and/or prebiotics may have beneficial effect in allergy management (*Berni Canani 2012, Gruber 2010, Van de Aa 2010 & 2011*)

Very limited data regarding Non-IgE mediated allergic infants receiving AAF

Michaelis et al. 2016
Previous studies including the specific synbiotic ingredients

Two double-blind randomized controlled clinical trials evaluated safety and growth (AAF vs AAF with synbiotics) and hypoallergenicity

<table>
<thead>
<tr>
<th>Subjects</th>
<th>N</th>
<th>Study length</th>
<th>Conclusions AAF with synbiotics</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy infants</td>
<td>115</td>
<td>16 weeks</td>
<td>- Safe
- Adequate growth in healthy infants</td>
<td>Harvey et al. 2014</td>
</tr>
<tr>
<td>full term (0 - 15 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMA infants</td>
<td>110</td>
<td>16 weeks</td>
<td>- Safe
- Adequate growth in CMA infants
- Suitable for management of CMA
- Exploratory outcome suggests less reported infections, less antibiotics</td>
<td>Burks et al. 2015</td>
</tr>
<tr>
<td>(0-8 months) confirmed IgE and/or non-IgE mediated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMA infants/children</td>
<td>30</td>
<td>7 days</td>
<td>- Hypoallergenic (no allergic reaction to AAF with specific synbiotic ingredients in 30 CMA infants)</td>
<td>Harvey et al. 2014</td>
</tr>
<tr>
<td>(0-3 years) confirmed IgE with DBPCFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ASSIGN – CLINICAL study

Methods:
• DB-RCT, 68 non-IgE mediated CMA infants (0-13 months) 8 wks intervention

Safety:
• Adverse events, medication use, growth

Primary parameters:
• Faecal bifidobacteria and *E. rectale* / *C. coccoides* group (FISH)

Secondary parameters:
• Stool characteristics, gut immune health markers

Exploratory parameters:
• Sequencing of faecal bacteria, clinical symptoms (SCORAD + parent reported, follow-up at 12 & 26 wks

Healthy breastfed group

Non-IgE CMA infants group

n=68

n=34

n=34

Test product for 8 weeks

Control product for 8 weeks

Test product optional

Control product optional

T8wks

T12wks

T26wks

Confidential
Development of core microbiota – A gradual transition from infant to adult-like

Cheng et al., ISME J. 2016;10(4):1002-14
Demographics - Intention to treat

<table>
<thead>
<tr>
<th></th>
<th>Test (N = 35)</th>
<th>Control (N = 36)</th>
<th>Total CMA (N = 71)</th>
<th>Healthy subjects (N = 51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at baseline (months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>5.67 (3.24)</td>
<td>6.33 (2.71)</td>
<td>6.00 (2.08)</td>
<td>7.84 (3.25)</td>
</tr>
<tr>
<td>Min - Max</td>
<td>1.8 - 12.8</td>
<td>1.2 - 11.6</td>
<td>1.2 - 12.8</td>
<td>2.6 - 14.2</td>
</tr>
<tr>
<td>Sex (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>28.6</td>
<td>25.0</td>
<td>26.8</td>
<td>45.1</td>
</tr>
<tr>
<td>Male</td>
<td>71.4</td>
<td>75.0</td>
<td>73.2</td>
<td>54.9</td>
</tr>
<tr>
<td>Race (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>5.7</td>
<td>2.8</td>
<td>4.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Black</td>
<td>2.9</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Caucasian / White</td>
<td>88.6</td>
<td>88.9</td>
<td>88.7</td>
<td>92.2</td>
</tr>
<tr>
<td>Combination Of Above / Other</td>
<td>2.9</td>
<td>8.3</td>
<td>5.6</td>
<td>7.8</td>
</tr>
<tr>
<td>Mode of delivery (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caesarean section</td>
<td>20.0</td>
<td>41.7</td>
<td>31.0</td>
<td>13.7</td>
</tr>
<tr>
<td>Vaginal</td>
<td>80.0</td>
<td>58.3</td>
<td>69.0</td>
<td>86.3</td>
</tr>
<tr>
<td>Country of residence (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>17.1</td>
<td>13.9</td>
<td>15.5</td>
<td>0.0%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>60.0</td>
<td>69.4</td>
<td>64.8</td>
<td>29.4</td>
</tr>
<tr>
<td>Italy</td>
<td>17.1</td>
<td>13.9</td>
<td>15.5</td>
<td>11.8</td>
</tr>
<tr>
<td>Sweden</td>
<td>5.7</td>
<td>2.8</td>
<td>4.2</td>
<td>58.8</td>
</tr>
</tbody>
</table>

N is number of subjects. Denominator for % is number of subjects in treatment group with non-missing data.

PI ASSIGN: Dr. Louise Michaelis

Consultant Paediatrician in Immunology and Allergy

Great North Children’s Hospital, UK
Primary outcomes in intention to treat analysis (ITT)
Increased level of – infant-like – Bifidobacteria

Statistics are based on ANCOVA comparing Test vs Control with Week 8 values as outcome, stratification factor (skin or gastrointestinal symptoms) and imputed baseline values as covariate and treatment as fixed effect.

PI ASSIGN: Dr. Louise Michaelis Great North Children’s Hospital, UK
Decreased level of – adult-like – E. Rectale / C. coccoides group

Statistics are based on ANCOVA comparing Test vs Control with Week 8 values as outcome, stratification factor (skin or gastrointestinal symptoms) and imputed baseline values as covariate and treatment as fixed effect.

PI ASSIGN: Dr. Louise Michaelis Great North Children’s Hospital, UK
ASSIGN – Conclusions

• The investigated AAF with synbiotics is safe and suitable for dietary management of infants with suspected Non-IgE mediated CMA

• Primary outcome met: Eight weeks use of AAF with specific synbiotics results in:
 ✓ Increase of infant like bifidobacteria
 ✓ Decrease of adult like *E. rectale/*C. coccoides group
 ✓ Bifidobacteria and *E. rectale/*C. coccoides levels in the test group are close to levels seen in age matched healthy subjects

• Further analysis ongoing for wk12 and wk26 clinical and fecal data; Wk 8 in depth microbiota (by sequencing method)
Acknowledgements

• The research team of Dr. Louise Michaelis
 • Dr Quentin Campbell-Hewson
 • Phil Woodsford
 • Claire Simmister
 • Evelyn Thomas
 • Anne McDonnell
 • Prof. David Candy, Royal Alexandra Children’s Hospital, UK
 • Dr. Assad Butt, Royal Alexandra Children’s Hospital, UK
 • Dr. Adam Fox, Guy’s & St Thomas’ Hospital, UK
 • Dr. Lee Noimark, Barts / Royal Hospital, UK
 • Dr, Neil Shah, Great Ormond Street Children’s Hospital, UK
 • Prof Antonella Muraro, University Hospital Padova, IT
 • Dr. Diego Peroni, University Hospital Verona, IT
 • Prof. Yvan Vandenplas, University Hospital Brussels, BE
 • Prof. Francoise Smets, U.C.L. Saint-Luc, BE
 • Dr. Sandra Mullier, HUDERF Brussels, BE
 • Prof. Christina West, Umeå University, SE

Nutricia Research:
 Ewa Latko
 Lucien Harthoorn
 Marleen van Ampting
 Manon Oude Nijhuis
 Barbara Mourmans
 Reina den Hollander
 Willemien Sinke
 Marjolein Alvares
 Heidi Sonnemans
 Rob Slump

Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands

Prof Jan Knol,
Harm Wopereis
Umeå university
A/Prof Patrik Rydén
Linda Vidman

SciLife Lab, Karolinska Institutet
Prof Lars Engstrand
Dr Daniel Lundin
Hugo Wefer, Annika Fahlen

University of Western Australia
Prof Susan Prescott, Prof Meri Tulic
CAIR research team

Funding: Umeå University, Swedish Society of Medical Research, Throne Holst Foundation, Astma research grant UWA
Registered Dietitians or Registered Nurses

To obtain your 1 CPEU credit:

1. Sign into: http://NutriciaLearningCenter.com
2. Click on CE credit Request
3. Input needed information:

 EVENT CODE: GWRGM1

 EVENT DATE: 11/22/2016

The opinions expressed are those of the presenter and not necessarily reflective of the views of Nutricia North America. Any specific brands mentioned are examples or recommendations from this healthcare professional and aside from those which specify they are manufactured by Nutricia, are not affiliated with or endorsed by Nutricia.