

1st reported cases of EoE

Case report

Eosinophilic esophagitis in a patient with vigorous achalasia

R.T. Landres M.D., G.G.R. Kuster M.D., W.B. Strum M.D.

Departments of Medicine and Surgery, Scripps Clinic Medical Instititions, La Jolla, California, USA

Abstract

A patient with vigorous achalasia is presented who had marked smooth muscle hypertrophy and eosinophilic infiltration of the esophagus identical to that seen in patients with eosinophilic gastroenteritis. Eosinophilic infiltration of the esophagus probably represents a variant of the eosinophilic gastroenteritis syndrome and may predispose to an esophageal motor disorder.

Gastroenterology 1978

The American Journal of Surgical Pathology 9(7): 475-479, July © 1985 Raven Press, New York

Randall G. Lee, M.D.

Marked eosinophilia in esophageal mucosal biopsies

ABSTRACT The significance of marked eosinophilic infiltration in esophageal mucosal biopsy specimens was evaluated in 11 patients. The patients were generally young, with an average age of 14.6 years; all had diffuse intraepithelial eosinophilia in several biopsies. Ten patients (91%) had evidence for reflux esophagitis, which was associated with esophageal stricture in three of the six patients older than 1 year. Marked esophageal eosinophilia might therefore indicate prolonged or severe gastroesophageal reflux. One patient with peripheral eosinophilia, a history of asthma, and concurrent idiopathic eosinophilic gastroenteritis lacked evidence of reflux and represents a case of idiopathic eosinophilic esophagitis. Critical review of the literature establishes three additional cases. Idiopathic eosinophilic esophagitis is an unusual variant of idiopathic, but presumably allergic, eosinophilic infiltration of the gastrointestinal tract.

Endoscopy done on 6 weeks PPI

Marked diffuse basal cell hyperplasia is noted with basal cells extending to just beneath the surface. Many intraepithelial eosinophils are present often exceeding 150/high power field at the G-E junction, up to 200/high power field in the distal esophagus and up to 75/high power field in the proximal esophagus.

13

Esophageal Eosinophilia

- Eosinophilic Esophagitis
- Gastroesophageal reflux disease
- PPI-responsive esophageal eosinophilia (now a subgroup of EoE)
- Celiac disease
- Crohn's disease
- Eosinophilic gastroenteritis
- Hyper eosinophilic syndrome
- Achalasia
- Infection
- Graft-versus-host-disease
- Vasculitis, pemphigus, connective tissue disorder

Natural History of Primary Eosinophilic Esophagitis: A follow-up of 30 adult patients for up to 11.5 years

Table 3. Endoscopic and Histologic Alterations During Follow-Up

	Baseline examination	Follow-up examination	Р
Overall intensity of endoscopic alterations (%)			
Absent	2 (6.7)	1 (3.3)	
Minimal	17 (56.7)	15 (50.0)	
Moderate	8 (26.7)	12 (40.0)	
Severe	3 (10.0)	2 (6.7)	
Mean histologic markers of inflammatory activity			
Numbers of eosinophils in the esophageal epithelium			
Proximal part (cells/high-power field)	78.7 (2-158)	40.3 (0-174)	0.0025
Distal part (cells/high-power field)	117.5 (29-402)	40.8 (0-143)	0.0654
Basal cell hyperplasia (%)	65.1 (20-80)	49.5 (20-80)	0.0009
Papillary hyperplasia (%)	79.7 (50-90)	66.4 (60-40)	0.0352

Stricturing disease in pediatric cohort (2015-2018)

			Median		Symptoms at presentation (%)			
	Patients	Median Age at Dx years (IQR)	Duration Symptoms [‡] <i>months</i> (IQR)	inipact.	Dysphagia	Nausea/ Emesis	GER	Heartburn/ Chest pain
Strictures	8	13.1 (9.6-14.0)	15 (12-84)	88	88	25	25	25
*Strictures req. dilatation	4	13.3 (11.0-14.0)	18 (12-84)	75	100	25	0	25
Subtle signs narrowing	11	9.0 (5.4-13.9)	36 (24-60)	55	64	18	9	18
No narrowing	166	9.5 (5.6-12.8)	12 (6-36)	20	55	44	21	17
Overall	185	9.7 (5.7-13.3)	12 (6-36)	25	56	41	20	18
	Median #		Scope find	ings at diag	nosis (%)			
	scopes (IQR)	Furrow	LOVP	Trachea.	Exudate	Narrowing		
Strictures	3.5 (3-5)	50	63	63	38	88		
*Strictures req. dilation	5 (4.5-7)	25	50	50	25	100		
Subtle signs narrowing	2 (2-3)	91	82	27	55	55		
No narrowing	2 (2-3)	77	54	7	55	0		
Overall	2 (2-3)	78	57	11	55	8		
					Bu	rnett et al JPC	GN repo	rt accepted 2021

Variability in EoE phenotype

- Symptoms :
 - No Symptoms or Minimal sx
 - Non specific symptoms e.g abdominal pain
 - Dysphagia symptoms mild to severe
 - Associated with GERD
- Endoscopy / Imaging
 - Inflammatory to stricturing

27

Treatment

- Dietary
- Medical
 - Proton-pump inhibitor therapy
 - Steroid budesonide slurry, swallowed fluticasone
- Management of complications
 - Stricture dilation

Conclusions

- Diagnostic Criteria for EoE has evolved PPI no longer needed for diagnosis PPI-REE is considered a subgroup of EoE
- Incidence and risk of stricturing disease is uncertain but likely high
- The pathogenesis of EoE is incompletely understood but involves genetic, environmental, and host immune system factors. The esophagus of EoE patients has an impairment of epithelial cell differentiation and barrier function
- It remains uncertain whether long-term treatment change the natural history of the disease

Case 1

- 12 year old boy, referred for dysphagia and 'choking' for several years
- Episodes have occurred with rice and meats
- Has never needed to come to an ER episodes self resolve
- Past medical history: asthma on puffers, no eczema or allergic rhinitis
- Brother has asthma
- No known food allergies
- Physical Examination: normal, well grown

Investigations:

- Upper GI barium normal, no stricture
- Skin prick testing positive to grass and mold
- Upper endoscopy is planned

Follow-up endoscopy

- Continued milk-free diet
- Upper endoscopy normal appearance of the esophagus
- Biopsies no eosinophils in any level
- Ongoing plan: to continue with milk-free diet
- Ensure adequate calcium and vitamin D intake
- Close attention to growth

Case 2

HISTORY

- Background: frequent spitting up as a baby, history of eczema
- Dysphagia at 6 years of age (initially to solids then to liquids) – referred to GI at age 10 years
- Weight and height on the 3rd percentile
- Upper endoscopy narrowing 'stricture' in proximal esophagus
- Other investigations: CBC, albumin CRP, fecal calprotectin and MRE – no evidence of Crohn's Disease

Scope #1					
Esophageal Location	Proximal	Mid	Distal		
Eosinophil count/hpf	42	N/A	54		
Other features	Eosinophilic abscesses, stricture noted (proximal esophagus)				

Follow up

- Feels well on budesonide
- Occasional dysphagia with large food pieces
- Scope reported as showing no stricture but size 2.4 scope used (size 2.8 was not available)
- Histology: 33 eosinophils/hpf in distal esophagus biopsy, none seen in mid and proximal biopsy
- Subsequent course: finished budesonide, still had some food restrictions, intermittent use of budesonide to help with dysphagia
- Annual 8 am cortisol levels, and one ACTH stimulation test (normal)

Follow up scope

- Macroscopically normal, though some resistance to scope passage in mid esophagus
- Biopsies normal
- Scope with dairy introduction active EoE
 - Confirming milk as a true allergen
- Now trying to reintroduce wheat
- Plan to reintroduce foods in a sequential manner

Case 3

- 2 year old child, referred for failure to thrive
- Anemia (Hgb 74), iron deficient, anti-TTG positive: level of 125 CU, lab normal < 30

Case 3

- 2 year old child, referred for failure to thrive
- Anemia (Hgb 74), iron deficient, anti-TTG positive: level of 125 CU, lab normal < 30

Celiac Disease Suspected

- Upper endoscopy: stricture in distal esophagus and scope did not pass through
- White plaque covering 40% of the surface area with possible underlying ulcer
- Proximal to the narrowing, there was furrowing of the esophagus and it appeared leathery, difficult to obtain biopsy → 2 esophageal biopsies obtained, no duodenal biopsies

Follow up endoscopy

- On 6 food elimination diet (dairy, wheat, soy, egg, nuts, shellfish)
- Mucosa looked normal ? Small tongue at site of healed stricture
- No white plaques or furrows
- Esophageal biopsies: mild spongiosus, no increase in eosinophils.
- Duodenal biopsies were normal (remember, still gluten-free)

Subsequent course

- Gradual reintroduction of all foods, followed by scopes after each food reintroduction
- Continued on proton pump inhibitor
- No recurrence of esophageal eosinophilia
- Duodenal biopsies normal when gluten reintroduced
- HLA DQ2/DQ8 absent
- Continued to see salmon-coloured tongue in the esophagus – columnar epithelium

Objectives

- 1. Understand the breadth of dietary interventions for the management of EoE
- 2. Evaluate the current literature in terms of efficacy of food elimination
- 3. Highlight circumstances where you may not want to consider dietary interventions

Dietary Management in EoE <u>Elemental</u> • ormula, No other food • <u>food Elimination Diet (FED</u> • No Milk, Soy, Eggs, Wheat, Nuts and Seafood • <u>fED</u> • No Milk, Wheat <u>1 FED</u> • No Milk, Wheat

ElementalAll Intact Protein96-97%6FEDMilk, Soy, Eggs, Wheat, Seafood, Nuts/peanuts70%4FEDMilk, Soy, Eggs, Wheat, Seafood, Nuts/peanuts64%1 FEDMilk Strict vs. Liberalized25-60%2-4-6 FED2- Milk and Wheat 4- Egg and Legumes43% (2FED)	Diet Name	What's Eliminated?	Response rate
Seafood, Nuts/peanuts4FEDMilk, Soy, Eggs, Wheat,64%1 FEDMilk Strict vs. Liberalized25-60%2-4-6 FED2- Milk and Wheat43% (2FED)			
1 FEDMilk Strict vs. Liberalized25-60%2-4-6 FED2- Milk and Wheat43% (2FED)	6FED		70%
2-4-6 FED 2- Milk and Wheat 43% (2FED)	4FED	Milk, Soy, Eggs, Wheat,	64%
	1 FED		25-60%
6- Nuts and Seafood	2-4-6 FED	4- Egg and Legumes	43% (2FED)
	Citation		
	Kagalwalla AF, et al. (201 Kagalwalla et al, (2011)	17) Clin Gastroenterol Hepatol. 2017;15:1698-1707. IPGN; Aug 53:145-149	e7.
Gonsalves, N., G. Y (2012). Gastroenterology 142(7): 1451-9 e1 Kagalwalla AF, et al. (2017) Clin Gastroenterol Hepatol. 2017;15:1698-1707.e7. Kagalwalla et al, (2011) JPGN; Aug 53:145-149 Kagalwalla, A. F., T. A. (2006). "Clin Gastroenterol Hepatol 4(9): 1097-102.	Liacouras, C. A., J. M. Sp Markowitz, J. E., J (2003	ergel, et al. (2005). Clin Gastroenterol Hepatol 3(12)). Am J Gastroenterol 98(4): 777-82.): 1198-206.
Gonsalves, N., G. Y (2012). Gastroenterology 142(7): 1451-9 e1 Kagalwalla AF, et al. (2017) Clin Gastroenterol Hepatol. 2017;15:1698-1707.e7. Kagalwalla et al, (2011) JPGN; Aug 53:145-149	Molina-Infante, J., Lucer	ido, A. J. (2020) Current Opinion in Gastroenterolog rnal of the Canadian Association of Gastroenterolog	

Various dietary management strategies for EoE – pooled response rates

Dietary Management Strategy	Children %	Adult %
Elemental diets	90	94
Six-food elimination diet	73	71
Four-food elimination Diet	60	46
Two-food elimination diet	43	3*
Milk elimination diet (1 food only)	66	100
Allergy test-directed diet	48	32

Arias A, González-Cervera J, Tenias JM, Lucendo AJ. Efficacy of dietary interventions for inducing histologic remission in patients with eosinophilic esophagitis: a systematic review and meta-analysis. Gastroenterology. 2014 Jun;146(7):1639-48. *Chang JW, Haller E, Dellon ES. Dietary Management of Eosinophilic Esophagitis: Man Versus Food or Food Versus Man? Gastroenterol Clin North Am. 2021 Mar;50(1):59-75.

Unknowns

- How do we evaluate adherence?
- Definition of Response?
 - Is there a role for symptomatic improvement? Is remission defined the same?
- How strict one must be with the eliminated food(s)?
 - Is baked ok?
 - Are trace amounts ok? Soy Lecithin?
 - Beyond QOL, is strict elimination increasing risk of IgE?
 - Is it wheat or gluten elimination?
 - Why do some places eliminate legumes (lentils) with soy.
 - How about Peanut, shouldn't that be with legumes or with nuts?
 - Why do some places eliminate beyond meats, corn, other....

When would you consider against dietary interventions

• It is not PATIENT centred

- Including awareness of repeat endoscopic evaluation
- Not sustainable i.e. treatment is worse than the underlying condition
- Poor nutritional status
- Poor relationship with food / aversion / ARFID
- Multiple IgE food allergies
- Resources / Education
 - \$ diary and wheat free alternatives are more costly
 - Parental Social
 - Lack of RD to support families
- Patient has a stricture

Real life

- It's how you sell it about 45% of our patients have tried dietary therapy
 - Females slightly more

23

Objectives

- 1. Understand the breadth of dietary interventions for the management of EoE
- 2. Evaluate the current literature in terms of efficacy of food elimination
- 3. Highlight circumstances where you may not want to consider dietary interventions

Learning Objectives

- 1. Review evidence for the efficacy of an elimination diet in managing EoE
- 2. Highlight the nutritional considerations of an elimination diet in EoE
- 3. Discuss practical considerations in implementing an elimination diet for EoE

Dietary Approaches in Managing EoE				
Diet	Foods Eliminated			
Elemental	 Eliminate food antigens Amino acid formula 			
Food allergy guided elimination dietSkin prick testingAtopy patch testing	Eliminate food that elicits +ve test response			
 Empiric elimination diet Six-food elimination diet (SFED) Four-food elimination diet (FFED) Two-food elimination diet (TFED) Dairy/CMP free 	 Eliminate specific foods: Dairy, wheat, egg, soy/legumes*, tree nuts, fish & seafood Dairy, wheat, egg, legumes* Dairy, wheat 			

	Benefits	Challenges
	Elemen	tal Diet
	cacious ick response time	 Palatability (administration route) Cost Adherence Long term use in children may impact oral- motor and developmental skills
	Empirio	cal Diet
 Les (en No Ma 	derate efficacy s foods to reintroduce vs elemental doscopies) allergy testing y be cost effective long term (vs topical roids)	 No standardized approach Psychosocial impact Long term data lacking e.g. risk of developing IgE allergy, change to gut microbiota

EoE: Nutritional Status

Assessing Nutritional Status

Disease

- Severity and symptoms
- Comorbidities e.g. IgE food allergy, ASD, etc.

Anthropometrics

• Height, weight and BMI

Intake

Biochemical

• Nutritional deficiencies

Children	Adults
Feeding difficulties n	Dysphagia
Food aversion	Food impaction
Decreased appetite	Decreased appetite
Heartburn	Heartburn
Chest pain	Uncommon
Abdominal pain	Uncommon
Gagging	Uncommon
Nausea	Nausea
Regurgitation	Regurgitation
Sialorrhea	Sialorrhea
Vomiting	Vomiting
Slow growth/failure to thrisev/weight loss	Uncommon
Cough	Uncommon
Dysphagia (older children)	Common
Food impaction (adolescence)	Common

Cianferoni A, et al., 2019

9

Tab	ole 3. Studies	reporting underv	veight and failure	to thrive in child	dren and adult patients with EGIDs.
Author, Year	Country	Study Design	Sample Size	Population	Outcomes
Hoofien et al., 2019 [39]	Europe	Multicentric retrospective study	410 EoE patients	Children	The most frequent indications for endoscopy were dysphagia (38%), gastroesophageal reflux (31.2%), food impaction (24.4%), and FTT (10.5%).
Chehade et al., 2018 [40]	U.S.A.	Multicentric study	705 EoE patients	Children and adults	FTT was present in 21.3% of enrolled subjects and was significantly common in children. Common pediatric comorbidities were neurological/developmental disorders, gastric tub placement, prematurity, atopic dermatitis, and fooc allergy.
Alhmoud et al., 2016 [41]	U.S.A.	Retrospective study	13 EoGE patients	Children and adults	FTT and weight loss were observed only in children Two children (15%) had severe mucosal involvemen leading to malabsorption, FTT, and weight loss.
Paquet et al., 2016 [42]	Canada	Retrospective study	62 EoE patients	Children	Sixty-two children were enrolled. Of these, 15 (24% met at least one criterion for FTT.
Colson et al., 2014 <mark>[43]</mark>	France	Retrospective study	59 EoE patients	Children	Most children had negative WFH z scores, and 10% had nutritional indices compatible with moderate malnutrition. Nutrition therapy (elemental and six food elimination diets) did not impair nutritional status.
Spergel et al., 2009 [44]	U.S.A.	Retrospective study	620 EoE patients	Children	FTT/feeding issues and GERD-like symptoms were the most common presentations in the youngest children. (118 patients).

Votto M, et al., 2021

Dietary Management: Foods to Eliminate

Strict elimination requires:

- Avoidance of all sources of potential antigen e.g. CMP
 - Some ingredients may be allowed e.g. soy lecithin
- Knowledge and understanding of product label reading
 - E.g. "may contain" statements

Milk	Wheat	Egg	Soy	Peanuts and Tree Nuts	Fish and Shellfish
Milk and dairy products ncluding: Casein; lactalbumin; lactoferrin; lactoglobulin; lactose; milk protein hydrolysate; milk solids; milk sugar; whey	Foods containing wheat and wheat flour such as bread, pasta, crackers, cookies, cereals, and cereal bars <u>Including:</u> Bulgar; couscous; cracker meal; enriched wheat flour; farro; hydrolyzed wheat protein; kamut/wheatgrass; matzoh; semolina; spelt; wheat bran; wheat ger; wheat gluten; wheat malt; whole wheat berries	Egg whites and egg yolks from birds such as chicken, duck, turkey, goose, and quail <u>Including:</u> albumin; ovalbumin; meringue; livetin; lysozyme; ovoglobulin, globulin; ovo vitellin, vitellin; ovomucin;	Soybeans and soy products Including: Edamame; tofu, bean curd; tempeh; miso; natto; soy, shoyu, tamari sauce; soy-based cheese, flour, ice cream, milk, nuts, sprouts, yogurt; soy protein isolate, texture vegetable protein; hydrolyzed vegetable protein Legumes may also be trigger foods	Whole peanuts and tree nuts as well as processed foods containing peanuts and tree nuts Including: Artificial, beer, mixed, ground monkey nuts; cold pressed, expeller, or extruded peanut or tree nut oils; arachis oil; all tree nuts, nut butters; natural nut extract; nut meal, paste, meat, pieces	All fish and shellfish
Wilk may also be present in: Baked goods e.g. bread, rolls, etc.; cereals; crackers; artificial butter flavor; lactic acid starter culture and other bacterial cultures; non-dairy products (such as non-dairy creamer); luncheon meat, notdogs and sausage	Wheat may also be present in: Starch (modified, vegetable); soy sauce; surimi; ready-made foods e.g. gravy and soups Foods labelled gluten-free are also wheat free	Egg may also be present in: Bakes goods e.g. bread, rolls, etc.; marshmallows; pasta/noodles; surimi	Soy may also be present in: Asian cuisine; vegetable gum, starch, or broth; meatless or veggie burgers; margarine	Nuts may also be present in: Pesto; baked goods; candy; Asian, African or Mexican cuisine; enchilada, mole sauce	

Concerns		
AdherenceRisk of Developing Allergy		£1,000
Strictness		FIIMINATE: CONSIDERATIONS
 Traces of antigen e.g. CMP in margarine Baked goods e.g. cookies, muffins 		, ve .
Baked		(ONS
 Heat/temperature of at least 350[®] F Baking for at least 30 min. 		,
• For dairy allergy: mix ~1:1 dairy to grain flou	r	

EoE: Biochemical

- Compromised dietary intake affects nutrient stores
- Limited data reporting nutrient deficiencies pre- and postintervention for EoE
 - Except vitamin D status; etiology unclear e.g. diet, geographical, etc.

Fissinger A et al., 2021; Groetch M, et al., 2013

Nutrient	Common Food Sources of Nutrient
Protein	Meat & poultry, seafood, legumes, milk and dairy products, soy products, egg, nuts, seeds
Vitamin D	Fortified cow milk or other fortified beverages, fish (salmon, sardines, herring), fortified yogurt or alternative yogurt, irradiated mushrooms
Zinc	Red meat, poultry, legumes, nuts, whole grains, fortified breakfast cereals, wheat germ, pumpkin and sesame seeds, dark chocolate, oyster and crab, milk and dairy products
Calcium	Enriched beverages and products, milk and dairy products, greens (beet, collard, mustard, turnip, spinach), rhubarb, beans, almonds, salmon, shrimp, tofu
Iron	Red meat, poultry, fish (salmon, tuna), fortified cereal bars, oatmeal, fortified cereals, cream of wheat, wheat germ, prunes, raisins, tofu, enriched bread, nuts, legumes, seeds, turnip greens, winter squash, spinach, enriched pasta
Fat	Meat, poultry, fatty fish, full-fat milk and dairy products, vegetable oils, margarines, processed foods, baked goods, fried foods.

15

Potential Nutrients of Concern and Food Alternatives for Dietary Management in EoE					
Protein	TABLE 7 Com milk	parison of en	riched dairy-f	ree bever	ages to cow'
 Poultry, meat (including game), whole grains, nutritional yeast, 		Calories	Protein	Fat	Calcium
spirulina	Cow's milk (whole)	150	8	8	300
Fat	Soy milk	100-130	6	3-4	300-350
 Oils (vegetable-based, seeds) & spreads, avocado 	Rice milk	120-130	1	2.5	300
	Coconut milk	45-90	1	5	100-450
Iron Poultry, meat (organ), enriched whole grains, vegetables 	Hemp/ sunflower/ flax milk	100	4	6	300
Vitamin D. availament in Canada	Oat milk	130	4	2.5	100
Vitamin D – supplement in Canada	Potato milk	70-110	0	0	300
Calcium – supplement to meet DRI	Nut (almond/ cashew/ hazeInut) milk	60-90	1	2.5	200-450
Zinc	Pea milk	60-150	8	4.5	450

source/cereal, iron, vitamin D, etc.) may be needed in addition to diet to meet nutritional needs

Food	Nutrients	Substitutions
Milk	Protein, calcium, phosphorus, vitamin D, riboflavin, pantothenic acid, vitamin B12.	Meats, legumes, whole grains, nuts, fortified foods and enriched beverages (dairy, soy, tree nut-free), fortified orange juice
Wheat	Iron, niacin, riboflavin, thiamin, folate, fibre	Fortified foods, fruits,vegetables, other fortified grains (barley, oat, corn, rice, rye). Alternative grains such as buckwheat, quinoa, millet, teff, amaranth
Egg	Protein, choline, vitamin A, riboflavin, pantothenic acid, biotin, selenium.	Meats, legumes, whole grains (gluten-free) or enriched gluten-free grains
Soy	Protein, thiamin, riboflavin, B6 folate, calcium, phosphorus, magnesium, iron, zinc.	Meats, other legumes, enriched beverages (as above)
Peanuts/tree nuts	Protein, selenium, zinc, manganese, magnesium, niacin, phosphorus, vitamin E, B6, alpha linolenic acid, and linoleic acid	Meats, seeds, seed butters, legumes, vegetable oils
Fish/shellfish	Protein, iodine, zinc, phosphorus, selenium, niacin Fatty fish: vitamin A, vitamin D, omega-3 fatty acids	Meats, legumes, seeds, vegetable oils (canola/flax), enriched beverages as above

References

Highlighted references may be a citation of interest

- Kelly KJ, Lazenby AJ, Rowe PC, et al. Eosinophilic esophagitis attributed to gastroesophageal reflux: improvement with an amino acid-based formula. Gastroenterology. 1995; 109:1503-12
- Lucendo AJ, Molina-Infante J, Arias A, et al. Guidelines on eosinophilic esophagitis: evidencebased statements and recommendations for diagnosis and management in children and adults. United Eur Gastroenterol J. 2017; 5(3):335-358.
- Molina-Infante J and Lucendo AJ. Dietary therapy for eosinophilic esophagitis. J Allergy Clin Immunol. 2018; 142:41-7.
- Cotton CC, Durban R, Dellon ES. Illuminating elimination diets: controversies regarding dietary treatment of eosinophilic esophagitis. Dig Dis Sci. 2019; 64:1401–1408.

References

- Spergel JM, Brown-Whitehorn TF, Cianferoni A, et al. Identification of causative foods in children with eosinophilic esophagitis treated with an elimination diet. J Allergy Clin Immunol. 2012; 130:461-7.
- Molina-Infante J, Martin-Noguerol E, Alvarado-Arenas M, et al. Selective elimination diet based on skin testing has suboptimal efficacy for adult eosinophilic esophagitis. J Allergy Clin Immunol. 2012; 130:1200-2.
- Wolf WA, Jerath MR, Sperry SLW, Shaheen NJ, Dellon ES. Dietary elimination therapy is an effective option for adults with eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2014; 12:1272-9.
- Wright BL, Kulis M, Guo R, et al. Food-specific IgG4 is associated with eosinophilic esophagitis. J Allergy Clin Immunol. 2016; 138:1190-2.
- Molina-Infante J, Arias A, Alcedo J, et al. Step-up empiric elimination diet for pediatric and adult eosinophilic esophagitis: the 2-4-6 study. J Allergy Clin Immunol. 2018; 141(4):1365-1372.

References

- Groetch M, Henry M, Feuling MB, et al. Guidance for the nutrition management of gastrointestinal allergy in pediatrics. J Allergy Clin Immunol. 2013;1:323-31.
- Skypala I, Bauer M, Dunn Galvin A, et al. The challenges of managing multiple food allergies and consequent food aversions. J Allergy Clin Immunol Pract. 2021; Oct 28:S2213-2198(21)01197-1. doi: 10.1016/j.jaip.2021.10.044.
- Leung J, Virk Hundal N, Katz AJ, et al. Tolerance of baked milk in patients with cow's milkmediated eosinophilic esophagitis. J Allergy Clin Immunol. 2013; 132(5):1215-1216.
- Teoh T, Mill C, Chan E, et al. Liberalized versus strict cow's milk elimination for the treatment of children with eosinophilic esophagitis. J Can Assoc Gastroenterol. 2019;2(2):81-85.
- Brown TM and Leung J. Tolerance of baked cheese in cow's milk-mediated eosinophilic esophagitis. ACG Case Rep J. 2019; 6:e00217. doi:10.14309/crj.00000000000217.

25

References

- Fissinger A, Mages KC and Solomon AB. Vitamin deficiencies in pediatric eosinophilic esophagitis: A systematic review. Pediatr Allergy Immunol. 2020; 31:835–840.
- Klinnert MD, Silveira L, Harris R, et al. Health related quality of life over time in children with eosinophilic esophagitis (EoE) and their families. J Pediatr Gastroenterol Nutr 2014;59(3): 308– 316.
- Wolf WA, Huang KZ, Durban R, et al. The six-food elimination diet for eosinophilic esophagitis increases grocery shopping cost and complexity. Dysphagia 2016;31:765–770.
- Mukkada V, Falk FW, Eichinger CS et al. Health-related quality of life and costs associated with eosinophilic esophagitis: a systematic review. Clin GastroenterolHepatol 2018;16:495–503.
- Sheedy K, Patel N, Porter J, et al. Cost and accessibility of empiric food elimination diets for treatment of eosinophilic oesophagitis. Nutrition Dietetics. 2021; 1:1-9.

Clinical Pearls On When and How to Start Reintroducing Foods

Heather Mileski, RD

McMaster Children's Hospital

Pediatric Gastroenterology and Nutrition

FOOD ALLERGY UNIVERSITY

Objectives

- Discussion around the practicalities of using endoscopy in reintroducing foods after elemental or elimination diet, specifically in Canadian context
- The role of families/patients in the process of food reintroduction
- Highlight specific nutritional concerns during the process of reintroduction

FOOD ALLERGY UNIVERSITY

Food Reintroduction

- Factors in choosing diet management:
 - Family/patient's preferences
 - Severity of disease
 - Response to previous treatments
 - Family dynamics
 - Quality of life
 - Nutritional Status
 - Feeding dynamics (? Oral aversion, fear associated with food, etc.)
- All these remain significant factors in reintroducing foods

"Tutorial: Nutrition Therapy in Eosinophilic Esophagitis" May 2020

- No instructions on how to reintroduce foods, length of time before reevaluation or method of re-evaluation
- No instructions for order to reintroduce foods

Recommendations for Reintroduction in Elimination Diet – "Protocol"

- Occurs after 6-12 weeks of elimination diet and an endoscopy to confirm disease remission (ASPEN guidelines 2020)
- IF successful in achieving symptomatic and histologic remission, can begin to add back single food groups in a sequential order
- Offer foods in age appropriate serving and 5-7 days/week
 - If symptoms develop stop introduction and do a wash out period (6 weeks)
- Recommended endoscopic evaluation after each separate allergen
 - Absence of symptoms does not mean EoE remains inactive

Recommendations for Reintroduction after Elemental Diet

- After 8-12 weeks remission confirmed by endoscopy (ASPEN 2020)
- Single ingredient foods are added.
- Number of foods added between endoscopic re-evaluation and length of time of trial is not standardized
- One protocol new "single ingredient" food every 2 weeks with endoscopic evaluation every 12 weeks
- Advance food in order of increasing allergenicity (fruits and vegetables, then wheat free grains, then meats/legumes)

An example of the process

UW Health 2015 Patient Handout

Food Reintroduction Progression

Group A:

Vegetables: Carrots, squash, sweet potatoes, white potatoes, broccoli, lettuce, string beans.

Fruit: Apples, pears, peaches, plums, apricots, grapes (noncitrus, nontropical)

Group B:

Fruit: Citrus and Tropical fruits – oranges, grapefruit, lemons, limes, bananas, kiwis, pineapples, mangoes, papayas, guavas, avocado

Melons - honeydew, cantaloupe, watermelon

Berries - strawberries, cherries, blueberries, raspberries

Group C:

Grains: Rice, oat, barley, rye

Meat: lamb, chicken, turkey, pork

Fish/Shellfish

Tree nuts: almond, walnut, hazelnut, brazil nut, pecan

Group D:

Corn, peas, peanut, wheat, beef, soy, egg, milk

Adapted from Gastroenterol Clin N Am 32(2003) 949-966

"Safe" Foods

- Sugar
- Dextrose
- Corn syrup
- High fructose corn syrup
- Corn syrup solids
- Sucrose
- Maltodextrin
- Artificial flavours

- Artificial sugars
- Soy lecithin
- Soy oil or any refined oil
- Citric acid
- Malic acid
- Salt
- Sodium nitrate
- Artificial colour

Complicating Factor: Adherence

- Varies by age, but 33% of children reported exposure to at least one food allergen in a 2 week period
- Factors impacting adherence include perceived effectiveness of the diet, social situations, diet related anxiety, palatability of foods

Nutritional Concerns

- Macronutrients:
 - Fats eliminating milk, egg, fish shown to have negative impact on Omega 3 levels (Aldamiz-Echevarria 2008)
 - Protein depends on foods eliminated, acceptance of meat protein
 - Fibre encourage pseudo grains (e.g. quinoa, millet, buckwheat, amaranth)
- Micronutrients:
 - Calcium/Vitamin D
 - Possibly zinc, copper, selenium, B vitamins
 - Theoretically vitamin B12 with long term PPI use

Nutritional Concerns: Feeding Dynamics

- Delayed oral motor skills children under age 3
- Disrupted "Division of Responsibilities" in feeding
- Specific behaviours include:
 - Food refusal
 - low volume/variety
 - poor acceptance of new foods
 - spitting food out
 - Grazing
 - lack of mealtime structure
 - prompting to eat
 - inconsistent patterns of eating

Clinical Scenarios: What do you do now?

A family wants to do diet therapy to manage the EoE but does not want to put their child through multiple endoscopies. What do you do?

- a) Recommend not using dietary elimination
- b) Proceed with dietary eliminations but use symptoms to guide reintroduction

You have a parent that is very motivated to try dietary elimination, but the patient is not interested in adhering to diet restrictions. What do you do?

a) Recommend medical management instead

b) Go ahead with dietary eliminations as it has less potential side effects then medication

c) Explore with the patient what their reasons are for not wanting to do dietary eliminations

Proton-Pump-Inhibitors as a Treatment Option for EoE

Dr. Kristen Bortolin, BSc, MD, FRCPC Paediatric Gastroenterology Fellow

Dr. Jessie Hulst, MD, PhD Paediatric Gastroenterologist Associate Professor

The Hospital for Sick Children, University of Toronto, Toronto, ON

1

FOOD ALLEI UNIVERS

Jan. 12. 2022

PPI Efficacy – Systematic Review

- 33 studies
- 619 patients with symptomatic EoE
 - 188 pediatric patients
- PPI induced:
 - Clinical response in 60.8%
 - Histologic remission in 50.5%
- Lansoprazole and rabeprazole showed highest efficacy
 - limited number of studies, small sample size, heterogeneity among studies

Lucendo. Clinical Gastroenterol and Hepatol. 2016.

CYP2C19 Allelic Variants

Allelic Variant	Numeric Designation
Normal (wildtype)	*1
Decreased Function (loss of function mutation)	*2, 3, 4, 5, 6, 7, 8
Increased Function (gain of function mutation)	*17
No Function	*9
	JPGN Volume 69, Number 5, November 2019 Scott SA, et al. Clin Pharmacol Ther. 2013;94(3):3 23. www.pharmgkb.org

11

CYP2C19 Phenotypic Variants

Phenotype	Definition	
Poor Metabolizer	2 copies of a decreased function allele	
ntermediate Metabolizer	 1 copy of a normal function allele and 1 copy of a reduced function allele 1 copy of a decreased function allele and 1 copy of an increased function allele 	
Normal Metabolizer	 2 copies of a normal function allele 	
Rapid Metabolizer	 1 copy of a normal allele and 1 copy of an increased function allele 	
Ultrarapid Metabolizer	 2 copies of an increased function allele 	
	JPGN Volume 69, Number 5, November 2019 Scott SA, et al. Clin Pharmacol Ther. 2013;94(3):317 www.pharmgkb.org Lima et al. Clin Pharmacol Ther. 2020.	

Disease	Affect
Reflux esophagitis	RM is a risk factor to PPI non-responsiveness
GERD	 association between CYP2C19 increased function allele (*17) and decreased acid suppression suggesting inadequate dosing in CYP2C19*17 carriers genotype affects recurrence rates
H. pylori	 LOF alleles are associated with increased eradication rates in patients taking 1st-generation PPI, no class effect with 2nd-generation PPI Eradication rate in RM and URM is lower than in PM
Esophageal	 genotyping of CYP2C19 <u>failed</u> to predict PPI-refractory non-
atresia	allergic esophagitis in children with and without EA

CYP2C19 Genotype Testing Use in Disease				
Disease	Affect			
Reflux esophagitis	RM is a risk factor to PPI non-responsiveness			
GERD	 association between CYP2C19 increased function allele (*17) and decreased acid suppression suggesting inadequate dosing 			
 Many of these studies have been conducted in Asian populations (higher allelic frequency of LOF mutations and low frequency of GOF mutations) Paucity of data on how to dose RM and URM 				
	Eradication rate in RM and URM is lower than in PM			
Esophageal atresia• genotyping of CYP2C19 failed to predict PPI-refract allergic esophagitis in children with and without EA				
Ichikawa. J Gastroenterol Hepatol. 2016., Saito. World J Gastroenterol. 2015., Hui-Lin. Plos one. 2013., Furuta. Clin Pharmacol Ther. 521-528. 2007., Franciosi. J Clin Pharmacol. 2018., Yasuda. Neurogastroenterol and Motility. 2020., Lima. Clin Pharmacol Ther. 1417-1423. 2021.				

- Single centre, non-interventional descriptive pilot/feasibility study investigating the pharmacogenetics of CYP2C19 patients with EoE on PPI therapy
- In collaboration with the Clinical Pharmacogenetics Team at SickKids (Dr. Cohn, Dr. Verstegen, Dr. Ito)
- **Primary Aim:** to describe the PPI metabolizer status in children and adolescents with EoE on PPI therapy and estimate the clinical utility of PGx testing in the management of disease
- Secondary Aim: to determine the % of patients who will experience a change in their EoE therapy based on CYP2C19 results
 Change in therapy = change in PPI dose or swapping to steroids or DET

Topical Steroids as treatment option for Eosinophilic Esophagitis

Janice L. Barkey BSCH MD MSc FRCPC Pediatric Gastroenterologist Assistant Professor of Pediatrics University of Ottawa

1

TEC

2

Topical Steroid Treatment

- EoE is a chronic progressive disease
- Most have relapse when therapy is stopped
- Swallowed topical steroids (STS) mainly successfully evaluated for short-term treatment of EoE
- Limited data for long-term treatment
- Three year follow-up study in 51 adults treated with STS showed*:
 Relapse in 91% of patients in average of 9 months' time once STS (fluticasone) d/c
 - · 69% of patients required repeated STS treatment at least once

*Helou EF et al Am J Gastroenterol 2008;103:2194 Dr. J. Barkey 2022

5

Side-effects of topical steroids

- Generally well-tolerated with good safety profile
- Most common side-effect: Candida esophagitis (8.7% of patients)*
 - Usually asymptomatic
 - If suspected, then need GI endoscopy confirmation
 - Anti-fungal treatment with fluconazole/nystatin for 7-14 days**
- Long-term use of high dose STS (asthma patients)
- Impaired growth in children, decreased BMD, skin thinning, bruising, cataracts Adrenal axis suppression***

 - Morning cortisol levels
 ACTH stimulation testing

*Chuang MY et al Clin Transl Gastroenterol 2015;6:e82 **Lucendo Al United European Gastroenterol J 2017;5:335-358 ***Harel S JPK0 2015;6:1:190-193 Ahmet A et al Allergy Asthma Clin Immunol 2016 Oct 10;12:49 Dr. J. Barkey 2022

Disc	closures		
	Commercial or Non-Profit Interest	Relationship	
	Abbvie	Advisory Board, Research Support	
	AVIR pharma	Speaker	
	MedTronic	Advisory Board	
	Sanofi	Medical Advisor	

