

Microbiome Dysbiosis: An Emerging Consideration in the Pathophysiology of Inborn Errors of Metabolism

Trevor O. Kirby, M.S. Doctoral Candidate College of Pharmacy and Pharmaceutical Sciences Washington State University 4/28/2021

Disclosures

Mr. Kirby received an honorarium provided by Nutricia North America

This does not pose a conflict of interest for this presentation

The opinions reflected in this presentation are those of the speaker and independent of Nutricia North America

Learning Objectives

- Understand dysbiosis and evaluate current research on dysbiosis in IEM.
- Define the gut-brain axis and identify how dysbiosis impacts disease presentation.
- Outline the role pre-, pro-, and synbiotics might play in the therapy of dysbiosis.

The Human Microbiome

1. Sender, et al. PLoS Biol. 2016;14(8):e1002533. 2. Qin, et al. Nature. 2010;464(7285):59-65.

5

What Is a Healthy Gut Microbiome?

- Depends on the individual
 - Structural trends
 - Dependent on lifestyle factors
 - Diet, cultural habits, exercise, stress, weight, antibiotic usage, etc.
 - Diversity
 - Stabilizes ~3 years of age
 - Decreases in elderly population (~70+ years of age)

Rinninella, et al. Microorganisms. 2019;7(1):14.

What is Diversity?

□ What alpha diversity means with the microbiome...

What Is a Healthy Gut Microbiome? (cont.)

- Healthy = structurally stable and diverse
 Functionally robust
- Stability is critical
 - Many challenges will present themselves

Pathogenic Defense

Spatial competition and defense against pathogens

1. Pandiyan. et al. Front Immunol. 2019;10:426. 2. Strandwitz. Brain Res. 2018;1693:128-33.

April 28, 2021

Dysbiosis – The Unhealthy Microbiome

- Eubiosis = balance; Dysbiosis = imbalance
 - Diversity typically is lowered in dysbiotic states
 - Relative to the individual and condition/disease
 - Extent of dysbiosis can correlate with disease
 - Neurological Disorders¹
 - Endocrine Disorders²
 - Inborn Errors of Metabolism (IEM)???

1. Agorastos, Bozikas. Psychiatriki. 2019;30(3):189-92. 2. Liu, et al. Cell Metab. 2020;31(1):77-91.

9

What do we know about dysbiosis and IEM?

Before We Get Started...

- Important to consider and remember:
 - Everyone has a unique microbiome
 - Dietary intervention depends on the individual
 - Disease presentation can vary
- Trends give us insights theoretical associations
 - Specific shifts in taxa?
 - Alterations in diversity?
 - Functional shifts?

11

Overview

IEM	Experimental Population(s)	Citations	
PKU	n = 8, age = 4.24 ±2;	Pinheiro de Oliveira, et al. PLoS One. 2016;11(6):e0157513.	
	n = 11, age = 33 ± 2 ;	Mancilla, et al. Microorganisms. 2021;9:530.	
	n = 21, age = 10.0 \pm 4;	Bassanini, et al. Front Cell Infect Microbiol. 2019;9:101. Verduci, et al. Nutr Metab Cardiovasc Dis. 2018;28(4):385-92.	
HCU	n = 6, age = 26 (median)	Rizowy, et al. Biochimie. 2020;173:3-11.	
GSD	n = 24, age = 10 to 20	Colonetti, et al. PLoS One. 2019;14(4):e0214582.	

Phenylketonuria (PKU)

Inability to metabolize phenylalanine

Dietary management:

- Reduced Phe intake
- Low Phe/Phe-free medical foods

Rocha, MacDonald. Pediatric Health Med Ther. 2016;7:155-63.

13

PKU and the Microbiome (Pinheiro de Oliveira, 2016)

- Reduction in diversity and richness
- Structurally distinct
 - Bacteroidetes, Verrucomicrobia,
 Akkermansia, Lachnospiraceae,
 Peptostreptococcaceae, Prevotella
 - ↓ *Alistipes*, *Parabacteroidetes*, *Family XIII UCG-001*

Pinheiro de Oliveira, et al. PLoS One. 2016;11(6):e0157513.

15

PKU and the Adult Microbiome (Mancilla, 2021)

- Trend in reduction of diversity and richness
- Structurally distinct
 - Bifidobacterium, Bacillus, Alistipes, Clostridium, Akkermansia, Bacteroides
 - Faecalibacterium, Lactobacillus, Prophymonas, Blautia, Frisingicoccus

Mancilla, et al. Microorganisms. 2021;9:530.

- Functionally distinct microbiota
- Significant changes
 - Biotin biosynthesis II, Superpathway of N-acetylneuraminate degradation, Allantoin degradation to glyoxylate III, Gluconeogenesis
 - Creatine degradation II, Superpathway of 2,3-butanediol biosynthesis

Mancilla, et al. Microorganisms. 2021;9:530.

17

PKU Diet and the Microbiome (Bassanini, 2019)

- Focus on the effect of the PKU diet
- No changes in diversity detected
- Structurally distinct
 - Lachnospiraceae, Blautia, Clostridium
 - Ruminococcacceae, **Faecalibacterium**, Dialister

Bassanini, et al. Front Cell Infect Microbiol. 2019;9:101.

Verduci, et al. Nutr Metab Cardiovasc Dis. 2018;28(4):385-92.

19

Glycogen Storage Diseases (GSD)

 Inability to metabolize glycogen (synthesis, metabolism)

Dietary therapy
 Uncooked cornstarch
 Polyunsaturated fats to reduce hyperlipidemia

1. Heller, et al. J Pediatr Gastroenterol Nutr. 2008;47 Suppl 1:S15-21. 2. Bali, et al. Glycogen Storage Disease Type I. GeneReviews® [Internet]. 2006.

GSD and the Microbiome (Colonetti, 2019)

- Reduced species richness and Shannon diversity
- Structurally distinct
 - Presence/absence significant
 - Actinobacteria, Proteobacteria, Escherchia/Shigella, Lactobacillus
 - $\Box \downarrow$ Euryarchaeota, *Coprococcus*, Blautia, Anaerostipes, Odoribacter, Faecalibacterium

** All GSD patients in study were on uncooked cornstarch

Colonetti, et al. PLoS One. 2019;14(4):e0214582.

2010) GSD and the Microbiome (Co

- Trends mirror inflammatory bowel disease (IBD) and cirrhosis
 - Diet-induced dysbiosis is clear
 - Does GSD alone induce dysbiosis??
- GSD patients on uncooked cornstarch had:
 - fecal pH
 - fecal carbohydrates

NUTRICIA LEARNING CENTER						
GSD	NAFLD Overlap					
↑ Actino/Proteobacteria, Escherchia/Shigella, Lactobacillus	↑ Lactobacillus					
↓ Euryarchaeota, Coprococcus, Blautia, Anaerostipes, Odoribacter, Faecalibacterium	↓ Coprococcus, Blautia, Anaerostipes, Faecalibacterium					
Fed	al pH					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSD Patient Healthy Control					

5.6

1. Colonetti, et al. PLoS One. 2019;14(4):e0214582. 2. Da Silva, et al. Sci Rep. 2018;8:144.

Diet... What is the Effect in General?

- Diet plays a huge role in shaping gut microbiota naturally
- What impact does specialized diet play in the previous data?
- How do we study the disease effect independent of diet?
- It is important to understand both simultaneously

The Gut-Brain Axis and the Impact of Dysbiosis on IEM Disease Presentation

The Gut-Brain Axis

- A bidirectional communication pathway between the gut and the CNS
 - Traditionally viewed in terms of neurotransmitters
 - Uses other traditional physiological systems to operate
 - Endocrine system
 - Immune system

Host-Microbe Neurotransmitter Interactions

Neurotransmitters

GABA

Acetylcholine

Norepinephrine

Serotonin

Dopamine

Histamine

Producing bacteria

Dopamine

25

- Bacillus subtilis
- Staphylococcus aureus
- Serotonin
 - Klebsiella pneumoniae
 - Lactobacillus plantarum
- Acetylcholine
 - Lactobacillus plantarum
- GABA
 - Lactobacillus
 - Bifidobacterium
 - Escherichia coli

Strandwitz. Brain Res. 2018;1693:128-33.

Consuming bacteria

Dopamine

- Escherichia coli 0157:H7 (EHEC)
- Pseudomonas aeruginosa
- Serotonin
 - Klebsiella pneumoniae
 - Lactobacillus plantarum

• GABA

Escherichia coli

Impact of Dysbiosis on IEM Clinical Presentation

Pre-, Pro-, and Synbiotics in IEMs

What are Pre-, Pro-, and Synbiotics?

Prebiotics

Substrates that are selectively utilized by host microorganisms, conferring a health benefit¹

 Primarily oligosaccharide carbohydrates
 Asparagus, garlic, onion, wheat, banana, rye, peas, ...

Live microorganisms which when administered in adequate amounts confer a health benefit on the host²

- Which one depends on benefit of interest
 - Lactobacillus rhamnosus GG for diarrhea
 - Saccharomyces boulardii for adjunct treatment of Helicobacter pylori

Synbiotics

- Combination of pre-/probiotics together
 Enhances probiotic and resident
 microbiota³
- Can be targeted:
 - Loaded with fructans plus lactic acid bacteria
 - Loaded with glucose derived oligosaccharides plus *Ruminococcus*
- Can decrease undesirable metabolite concentrations

1. Gibson, et al. Nat Rev Gastroenterol Hepatol. 2017;14(8):491-502. 2. Hill, et al. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-14. 3. Bengmark. Gastroenterol Clin North Am. 2005;34(3):413-36.

Do They Work for Disease - IBD?

	Efficacious	Non- Efficacious	Citations
Prebiotics	Fructans	-	Marushko, et al. Modern Pediatrics. 2013:66-72.
Probiotics	Lactobacillus spp., Enterococcus faecium, Saccharomyces boulardii	Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12	Tomasello, et al. J Biol Regul Homeost Agents, 2015;29(2):265-72. Wildt, et al. J Crohns Colitis. 2011;5(2):115-21.
Synbiotics	<i>Bifidobacterium longum</i> and Synergy 1 (Raftilose®)	-	Steed, et al. Aliment Pharmacol Ther. 2010;32(7):872-83.

Recall... IBD is common in GSD

33

Do They Work for IEMs?

Not much data for IEMs...

IEM	Туре	Efficacy?	Citations
PKU	Probiotic - pHENOMMenal	Yes in mouse model	Durrer, et al. PLoS One. 2017;12(5):e0176286.
Trimethylaminuria	Probiotic - Methanomassiliicoccus Iuminyensis B10	Theoretical prediction	Brugère, et al. Gut Microbes. 2014;5(1):5-10.
Hyperoxaluria	Probiotics – <i>Bifidobacterium</i> animalis subsp. lactis	Yes in mouse model	Klimesova, et al. Urolithiasis. 2015;43(2):107-17.
	Oxalobacter formigenes		Hatch, et al. Am J Physiol Gastrointest Liver Physiol. 2011;300(3):G461-9.
	Synbiotics - Oxadrop [®] and Agri-King Synbiotic	No in patients	Lieske, et al. Kidney Int. 2010;78(11):1178-85.

Theoretically, What Can We Do About Dysbiosis?

35

Microbiome Surveillance

- What if we tracked a patient's gut microbiome as disease progresses?
 - I do this for Succinic Semialdehyde Dehydrogenase Deficiency
 - IEM of GABA metabolism

□ Far from being a clinical service right now...

Dietary Supplementation

- Preemptive strategies
 - Encourage breastfeeding if possible
 - Diversify patient's diet within dietary restrictions
 - Particularly foods containing fiber
 - Choose formulas and medical foods with prebiotics
- Proactive strategies
 - Directed pre/pro/synbiotics targeting "reduced" taxa
 - Recommending lifestyle changes to promote healthy microbiota

Experimental Technologies

- Bacteriophage Technology
 - Viruses that attack certain bacteria only
 - Creating smart "phage cocktails" could allow for tailored changes to the microbiome structure
- Fecal Transplantation
 - Using stool from a healthy donor to reseed a healthy gut community
 - Last ditch effort to start the gut microbiome
- Transgenic probiotics
 - Leverage microbial metabolism strategically

Conclusions

- 1. Gut microbiome is essential for healthy physiology.
- 2. IEMs may be associated with dysbiosis.
- 3. Dysbiosis may be a pathogenic factor in IEMs that should be considered.
- 4. Modulating the gut microbiome may be a tool to mitigate IEM severity.

Thank you!

To obtain a certificate of attendance for 1 CE hour, please complete a brief survey which you can access via the QR code below or the following link: <u>https://www.surveymonkey.com/r/Dysbiosis_IEM</u>

Nutricia Learning Center is provided by Nutricia North America.

© 2020 Nutricia North America