

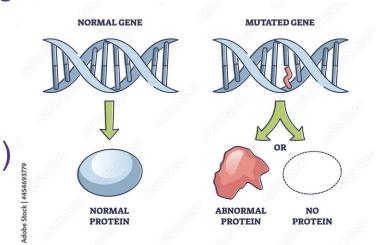
Nutrition 101 for Inborn Errors of Metabolism

Rachel Powers, RD Medical Affairs Advisor, Metabolics Nutricia North America March 12, 2024

Employee of Nutricia North America

This does not pose any conflict of interest for this presentation

The opinions reflected in this presentation are those of the speaker and independent of Nutricia North America



Participants will learn to:

- Recall the basics of amino acid disorders, organic acidemias, and urea cycle disorders.
- Explain the principles of dietary management for these IEMs.
- Advocate for the nutritional needs of patients with these IEMs as you encounter them clinically.

What is an Inborn Error of Metabolism (IEM)?

- Genetically inherited (also known as inherited metabolic disorders)
- Caused by a change in a gene, affecting the metabolic pathway (typically the function of an enzyme)
- Present from birth

FRICIA I FARNING CENTEI

Discovering IEM Diagnoses

- Many IEMs are diagnosed by state-run Newborn Screening (NBS) Programs
 - Blood spot taken within 24-48 hours of birth
 - Results with 4-10 days
 - Referral to Genetics provider to begin management
- Some infants may be diagnosed clinically because they present in the hospital before NBS results are back

Protein-Related IEM included on the RUSP

RUSP =

Recommended Uniform Screening Panel (from U.S. Secretary of HHS)

Click here for the full RUSP

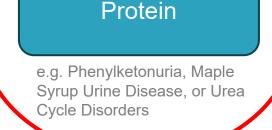
Click here to discover what is on your state's NBS **Core Conditions**

3-Hydroxy-3-Methyglutaric	Ť	
Aciduria 3-Methylcrotonyl-CoA	ł	
Carboxylase Deficiency		
ß-Ketothiolase Deficiency		2-Methyl-3-hydroxybutyric aciduria
Glutaric Acidemia Type I	S	2-Methylbutyrylglycinuria
Holocarboxylase Synthase Deficiency		3-Methylglutaconic aciduria
Isovaleric Acidemia	ti	Isobutyrylglycinuria
Methylmalonic Acidemia (Cobalamin disorders)	di.	Malonic acidemia
Methylmalonic Acidemia (methylmalonyl-CoA mutase)	Secondary Conditions	Methylmalonic acidemia with homocystinuria
Propionic Acidemia		Argininemia
Carnitine Uptake Defect/Carnitine Transport Defect		Benign hyperphenylalaninemia
Long-chain L-3 Hydroxyacyl-CoA Dehydrogenase Deficiency		Biopterin defect in cofactor biosynthesis
Medium-chain Acyl-CoA Dehydrogenase Deficiency		Biopterin defect in cofactor regeneration
Trifunctional Protein Deficiency	<u> </u>	Citrullinemia, type II
Very Long-chain Acyl-CoA Dehydrogenase Deficiency		Hypermethioninemia
Argininosuccinic Aciduria	Ŭ	Tyrosinemia, type II
Citrullinemia, Type I		Tyrosinemia, type III
Classic Phenylketonuria		
Homocystinuria	ļ	
Maple Syrup Urine Disease		
Tyrosinemia, Type I		

Infant Admissions pre-NBS Result

□ For infants who present with IEMs clinically, symptoms can be vague and serious:

- Lethargy progressing to coma
- Poor feeding
- Vomiting
- Hypotonia
- Rapid breathing
- Seizures (typically a later finding)
- Prompt medical intervention with appropriate IV fluids, indicated medications, and nutrition management can be life-saving
- Once an IEM has been included in the differential diagnosis, ACMG <u>ACT Sheets</u> provide guidance on next steps (including diagnostic evaluation & clinical considerations)



The genetically-impaired enzymes prevent the body from breaking down a component of one of the 3 macronutrients:

Carbohydrates

e.g. Galactosemia or Glycogen Storage Disease Fat

e.g. Very Long Chain Acyl Co-A Dehydrogenase Deficiency

Protein-Related IEM are classified in 3 categories

Amino Acid Disorders

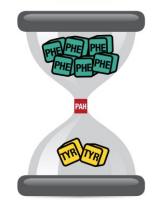
- Phenylketonuria (PKU)
- Maple Syrup Urine Disease (MSUD)
- Homocystinuria (HCU)
- Tyrosinemia (TYR)

Organic Acidemias

- Glutaric Acidemia Type 1 (GA-1)
- Methylmalonic Acidemia (MMA)
- Propionic Acidemia (PA)

Urea Cycle Disorders

- NAGS
- CPS1
- OTC Deficiency
- Argininosuccinate synthase deficiency (ASS)
- Argininosuccinic aciduria (ASA)
- Arginase deficiency (ARG1)


Understanding Protein-Related IEMs: PKU as an Example

- □ U.S. Incidence: 1:16,500 (approx. 220 births/year)
- **U.S. PKU** population \approx 12,000
- Enzyme impacted: Phenylalanine hydroxylase (PAH)

For someone without PKU, PAH converts PHE into TYR

For someone with PKU, there is not enough PAH to convert PHE into TYR

Without management, over time, the buildup of phenylalanine causes irreversible brain damage and poor intellectual development.

With management, the buildup of phenylalanine is controlled to support normal growth and development.

C

The Principles of Management

THE PROBLEM:

- The body isn't able to break down the offending amino acid(s) (AAs) in dietary protein.
- The AA(s) or their byproducts build up in the body, which is *toxic*.

THE SOLUTION:

- Reduce intake of the offending AA(s) by restricting protein.
- Provide adequate calories and other nutrients needed for growth, development, and to continue regular body functions while preventing catabolism.
 - → Metabolic formula, protein-free modulars, certain AA or other supplements

The Principles of Management

Metabolic formulas contain "protein equivalent" or "modified protein", meaning the offending AA(s) are omitted. The remaining protein needs are met through "intact" or "whole" protein.

NUTRICIA LEARNING CENTER

Some intact protein must be consumed to avoid essential AA deficiency. Metabolic formulas are *not* suitable as a sole source of nutrition.

Offending Amino Acid (AA) by Disorder

Phenylketonuria (PKU)	Phenylalanine	
Glutaric Aciduria Type 1 (GA-1)	Lysine & tryptophan	
Homocystinuria (HCU)	Methionine	
Isovaleric Acidemia (IVA)	Leucine	
Maple Syrup Urine Disease (MSUD)	Valine, leucine, and isoleucine	
Methylmalonic Acidemia (MMA)	Methionine, threonine, valine and isoleucine	
Propionic Acidemia (PA)		
Tyrosinemia (TYR)	Tyrosine and phenylalanine	
Urea Cycle Disorders (UCD)	All AAs restricted; only PRO in formula is essential AAs	

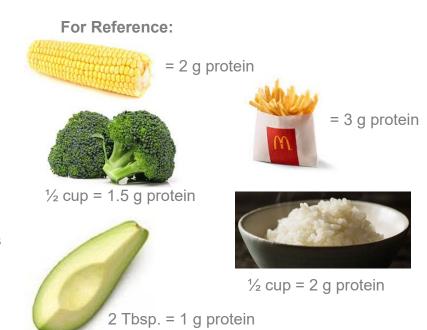
Percent of Protein from Metabolic Formula by Disorder

Phenylketonuria (PKU)	75-85%	
Glutaric Aciduria Type 1 (GA-1)	50%	
Homocystinuria (HCU)	Variable (60-80%)	
Isovaleric Acidemia (IVA)	Up to 60%	
Maple Syrup Urine Disease (MSUD)	80-90%	
Methylmalonic Acidemia (MMA)	0.200/	
Propionic Acidemia (PA)	0-30%	
Tyrosinemia (TYR)	Variable (>50%)	
Urea Cycle Disorders (UCD)	0-50%	

What this looks like for a PKU patient

- □ Total protein target: 120-140% of the DRI
- On average, 75-85% of protein from metabolic formula
- Goal of management: Maintain plasma PHE levels between 120-360 mmol/L

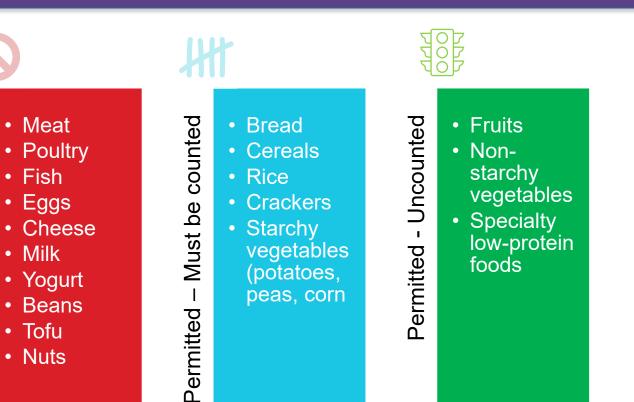
Example Diet Prescription:


8 y.o. female with classical PKU, 26 kg 140% of DRI for protein: 35 g 0.85 x 35 g = **30 g PE from PKU formula** Remaining **5 g protein from foods**

Daily formula prescription: 100 g powder mixed with 18 fl. oz. water Provides: 370 kcal & 30 g PE Meets 85% of protein needs & 33% of kcal needs

Daily intact protein prescription: 5 g of protein from foods

SERN/GMDI. PKU Nutrition Management Guidelines. 2022.



Intact Protein-Restricted Diets are Restricted

Permitted

Not

•

Routine metabolic clinic visits to monitor growth, development, and diet adherence

- Monthly during infancy; every 4-6 months during childhood; every 6-12 months in adulthood
- Plasma AA levels (and nutritional labs) consistently collected
- Dietary adjustments made based on growth, pertinent labs, and nutritional adequacy

For the patients who need it, metabolic formula *must* be taken daily

- For those who require metabolic formula, there is no way to replace it with standard foods.
- Following a low protein diet *without* metabolic formula could result in...
 - continuous feelings of hunger
 - protein deficiency
 - malnutrition
 - vitamin/mineral deficiencies (especially vit B12, iron, calcium, and vitamin D)
 - growth failure
- Some IEMs require less metabolic formula than PKU; certain patients may even be able to maintain metabolic control with a diet restricted in protein to the DRI only (without metabolic formula).
- Consequences of not taking metabolic formula as prescribed may be more critical, depending on the disorder, particularly for those where patients are at risk for a **metabolic crisis**.

Disorders at risk for a metabolic crisis

MSUD Maple Syrup Urine Disease

> MMA/PA Methylmalonic or Propionic Acidemia

GA-1 Glutaric Acidemia

IVA Isovaleric Acidemia A metabolic crisis or decompensation is brought on in instances where there are rapidly rising levels of the offending AA or its byproducts

NUTRICIA LEARNING CENTER

- Prior to treatment (infancy)
- Any circumstance that leads to catabolism (break down of the body's own muscle and tissues for energy)
 - Illness involving fever, vomiting, diarrhea
 - Surgery or trauma (i.e., car accident or broken bone)
 - Extreme or prolonged exercise

 Even minor illnesses can lead to a metabolic crisis, which can result in irreparable mental or physical disability

 \rightarrow these patients have specific dietary and medical protocols for illness

Inpatient Admissions – What to look for

- For these disorders, expect the patient/caregiver to bring an Emergency Protocol Letter which will contain:
 - Their diagnosis
 - Genetics provider on-call number (get in contact immediately WHILE following letter protocol)
 - Immediate protocol to follow
 - Typically IV glucose (to quickly mitigate catabolism)
 - Lab values to be drawn ASAP
- Ideally, the patient/family will also bring their Diet Plans: "Well Day" and "Sick Day" – if not, contact the Genetic/Metabolic RD and read their most recent note in the EMR (search for "sick day" in the EMR)

Understanding "Sick Day" Diets

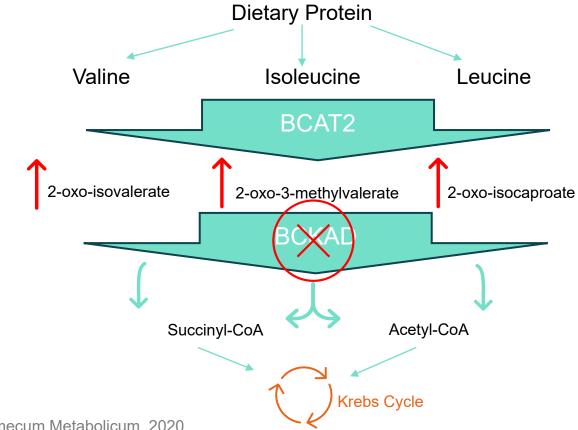
- No intact protein
- Increase in protein equivalent (from metabolic formula)
- □ Increase in calories (from metabolic formula and/or a protein-free modular)
- Increase in fluids
- May include an increase in certain amino acid supplements or other medically-necessary supplements (depending on the disorder)

Metabolic Disorder Overview

Amino Acid Disorders

Phenylketonuria (PKU)

Phenylketonuria (PKU)


Offending (limited) AA	Phenylalanine (PHE)
Impaired enzyme	Phenylalanine hydroxylase (PAH) – converts PHE into TYR
Management Goal	Blood PHE: 120-360 mmol/L
Metabolic Formula	Low in or free of PHE 75-85% of total protein
System(s) Impacted	Brain (irreparable brain damage with prolonged high PHE levels; short-term high-PHE can lead to executive functioning impairment); seizures, eczema, "musty" odor, hypopigmentation
Other notes	Adults not on diet or not currently on formula may have poor memory and challenges with planning and organization as a side effect of their high PHE levels.

NLC

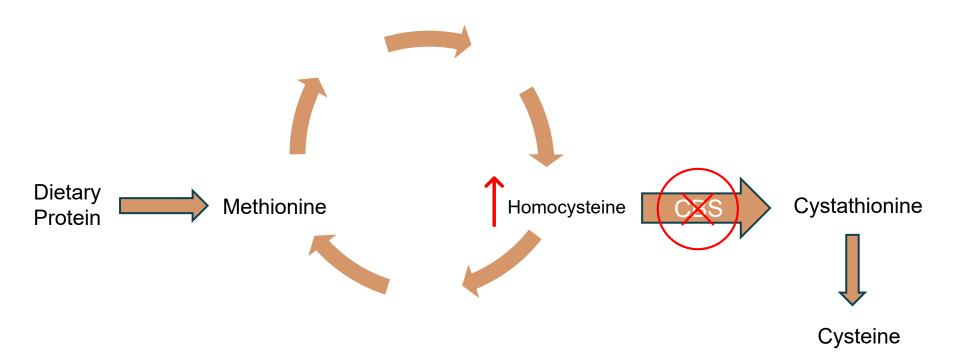
NUTRICIA LEARNING CENTER

SERN/GMDI. PKU Nutrition Management Guidelines. 2022.

Maple Syrup Urine Disease (MSUD)

NUTRICIA LEARNING CENTER

Zschocke J, Vademecum Metabolicum. 2020.


Maple Syrup Urine Disease (MSUD)

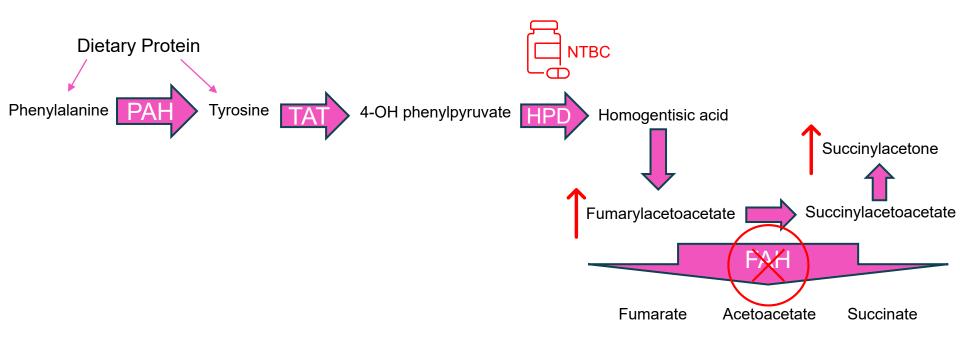
Offending (limited) AA	Leucine (LEU) & its ketoacid
Impaired enzyme	Branched-chain ketoacid dehydrogenase complex (BCKAD)
Management Goal	LEU: 75-200 mmol/L (for up to 5 yrs of age); 75-300 mmol/L (for over 5 yrs) ILE & VAL: 200-400 mmol/L
Metabolic Formula	Free of BCAAs (leucine, isoleucine, valine) 80-90% of total protein
Additional prescribed supplements	Isoleucine & valine
System(s) Impacted	Brain (Irreversible brain damage resulting in cognitive losses and/or movement disorders, coma)
Transplant	Liver transplant (typically) eliminates the high risk of metabolic crisis and removes diet restriction (& formula); however if transplant happens after cognitive losses, they will not be regained
Other notes	Even with consistent management, IQ levels of MSUD patients are below controls; adult patients may have a parent/care-person making the decisions regarding their care.

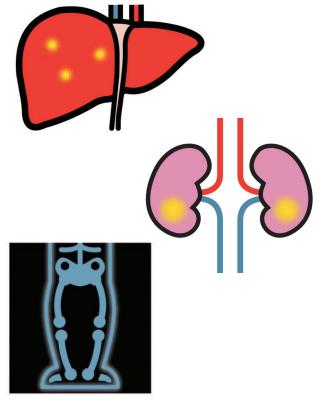
Homocystinuria (HCU)

Zschocke J, Vademecum Metabolicum. 2020.

Bernstein LE, Rohr F, van Calcar S, Eds. Nutrition Management of Inherited Metabolic Diseases. 2022.

Homocystinuria (HCU)

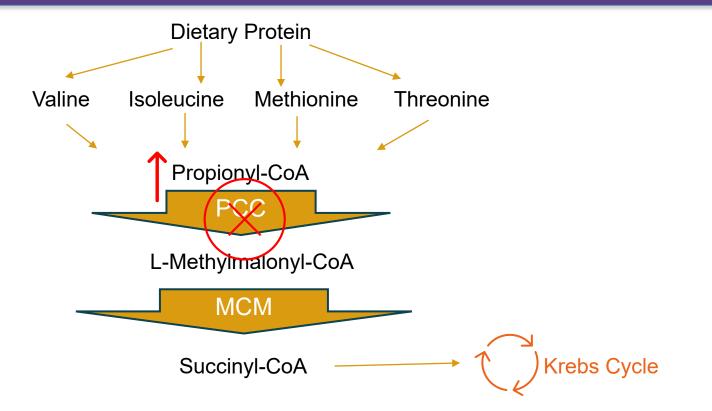

Offending (limited) AA	Methionine (MET)
Impaired enzyme	Cystathionine beta-synthase (CBS)
Management Goal	Total Homocysteine (tHcy): <50 mmol/L for pyridoxine-responsive <100 mmol/L for pyridoxine-unresponsive Plasma MET: <1000 mmol/L
Metabolic Formula	Free of methionine Variable % of total protein
Additional prescribed drugs and/or supplements	Betaine, cystine, folic acid, B12, vitamin C Pyridoxine (B6) – responder or not
System(s) Impacted	Brain (similar to PKU), eye lens dislocation, osteoporosis, blood clots, seizures
Other notes	These patients are often missed on newborn screening, so its not uncommon for older children to be starting on formula for the first time if they've just been diagnosed.


Tyrosinemia Type 1 (TYR)

Tyrosinemia Type 1 (TYR)

Offending (limited) AA	Tyrosine (TYR) and Phenylalanine (PHE)
Impaired enzyme	Fumarylacetoacetate hydrolase (FAH)
Management Goal	Plasma TYR: 200-600 mmol/L Plasma PHE: 20-80 mmol/L
Metabolic Formula	Low in or free of tyrosine & phenylalanine Variable % of total protein
Additional prescribed drugs and/or supplements	Nitisinone (NTBC)
System(s) Impacted	Liver and kidney failure, softening and weakening of bones; issues impacting the nervous system
Transplant	Liver transplant

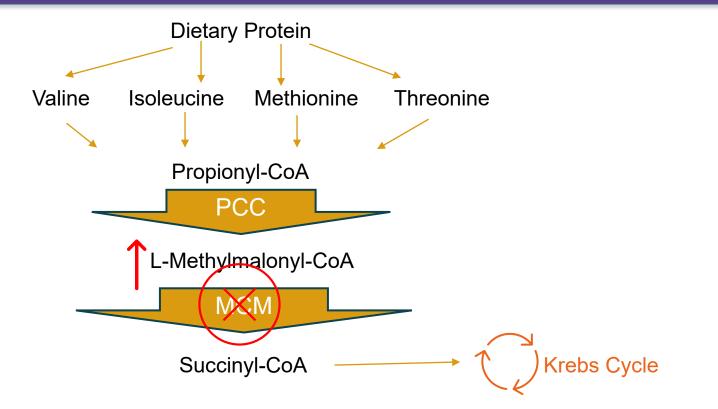
Bernstein LE, Rohr F, van Calcar S, Eds. Nutrition Management of Inherited Metabolic Diseases. 2022



Metabolic Disorder Overview

Organic Acidemias

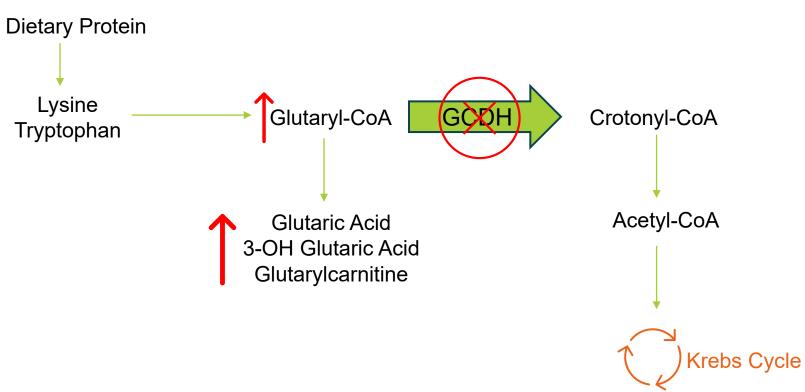
Altered Pathway for PA



Bernstein LE, Rohr F, van Calcar S, Eds. Nutrition Management of Inherited Metabolic Diseases. 2022 Zschocke J, Vademecum Metabolicum. 2020.

Altered Pathway for MMA

Bernstein LE, Rohr F, van Calcar S, Eds. Nutrition Management of Inherited Metabolic Diseases. 2022. Zschocke J, Vademecum Metabolicum. 2020.


Methylmalonic & Propionic Acidemia (MMA & PA)

NUTRICIA LEARNING CENTER

Offending (limited) AA	Isoleucine (ILE), Methionine (MET), Valine (VAL), and Threonine (THR)	
Impaired enzyme	Methylmalonyl-CoA mutase (MCM – for MMA) Propionyl-CoA carboxylase (PCC – for PA)	
Management Goal	Maintain plasma AAs WNL	
Metabolic Formula	MET-, THR-, VAL-free, Low-ILE 0-30% of total protein	
Additional prescribed drugs and/or supplements	Carnitine Nitrogen scavengers for hyperammonemia MMA: Hydroxycobalamin (B12) injections (responder or not)	
System(s) Impacted	Both: Brain and heart MMA: kidneys, eyes PA: pancreas	S P
Transplant	Both: Liver transplant (not curative) MMA: Kidney transplant (not curative)	Y
Other notes	Many patients have g-tubes	

Bernstein LE, Rohr F, van Calcar S, Eds. Nutrition Management of Inherited Metabolic Diseases. 2022

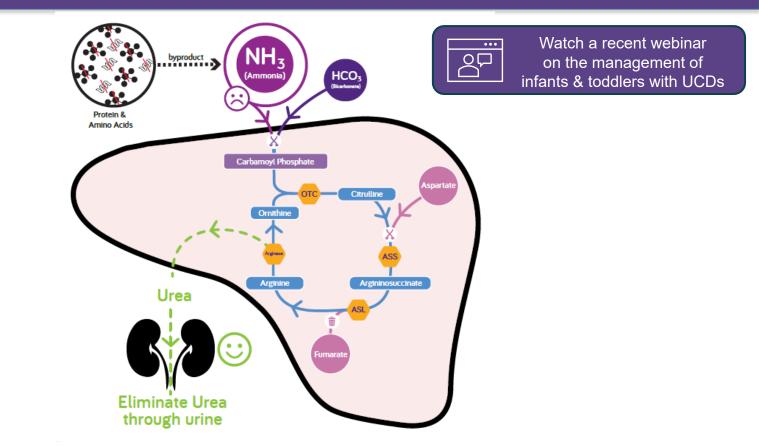
Glutaric Acidemia Type 1 (GA-1)

NUTRICIA LEARNING CENTER

Bernstein LE, Rohr F, van Calcar S, Eds. Nutrition Management of Inherited Metabolic Diseases. 2022. Zschocke J, Vademecum Metabolicum. 2020.

Glutaric Acidemia Type 1 (GA-1)

Offending (limited) AA	Lysine (LYS)
Impaired enzyme	Glutaryl-CoA dehydrogenase (GCDH)
Management Goal	Plasma LYS WNL (low end) Plasma free carnitine WNL
Metabolic Formula	LYS-free; low in or free of TRP 50% of total protein
Additional prescribed drugs and/or supplements	Carnitine
System(s) Impacted	Brain (risk of permanent striatal injury), microcephaly, dystonia, hypotonia
Other notes	Diet restriction (including metabolic formula) is typically liberalized after 6 years of age, but there is little consensus on practice



Metabolic Disorder Overview

Urea Cycle Disorders

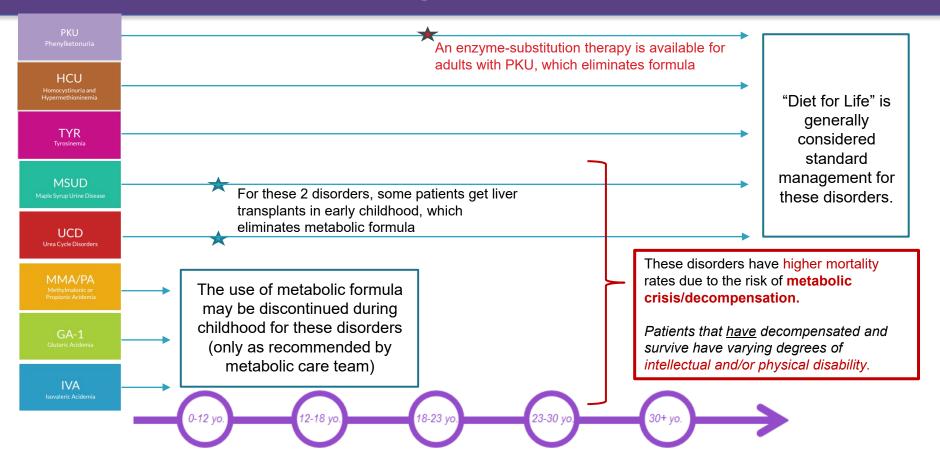
Urea Cycle Disorders

Bernstein LE, Rohr F, van Calcar S, Eds. Nutrition Management of Inherited Metabolic Diseases. 2022.

Urea Cycle Disorders

Offending (limited) AA	All Protein (all AAs); toxic metabolite is ammonia
Impaired enzyme	One of the 6 in the urea cycle disorder (see next slide)
Management Goal	Plasma AAs WNL Normal ammonia (<35 mmol/L)
Metabolic Formula	Essential AA containing 0-50% of total protein
Additional prescribed drugs and/or supplements	Nitrogen scavengers for hyperammonemia See next slide for supplemental AAs
System(s) Impacted	Brain, seizures, coma
Transplant	Liver transplant

Bernstein LE, Rohr F, van Calcar S, Eds. Nutrition Management of Inherited Metabolic Diseases. 2022.


Types of UCDs

Diagnosis	Level of Protein Restriction	Supplements
CPS1* Carbamoyl phosphate synthase 1 deficiency	High	Citrulline
OTC* Ornithine transcarbamylase deficiency	High	Citrulline
ASS Argininosuccinate synthase deficiency / Citrullinemia	High	Arginine
ASA / ASL Argininosuccinic aciduria / Argininosuccinate lyase deficiency	Moderate	Arginine
ARG1 Arginase deficiency	High	None
NAGS* N-acetyl glutamate synthase deficiency	None	Citrulline

*Not included on Recommended Uniform Screening Panel (RUSP) for NBS – typically diagnosed clinically

Protein Disorder Management Overview

- Principle of diet is to restrict offending AA(s) to prevent undesired outcomes, but enough to ensure growth and regular functions.
 - The remaining protein/calories/nutrients are fulfilled with metabolic formula.
- Patients with protein-related IEMs who present to the hospital require prompt intervention
 - Always follow the instruction of the patient's metabolic healthcare team
 - Protein-free calories
 - "Sick Day" Diet

Nutricia Learning Center (NLC)

- Nutricia Metabolics <u>Patient Education and Support</u> (including TEMPLE books & videos)
- GMDI/SERN <u>Nutrition Management Guidelines &</u> <u>Toolkits</u> (for PKU, MSUD and PA)
- Met Ed <u>"At a Glance</u>" Series
- □ <u>Genetic Metabolic Dietitians International (GMDI)</u>
- □ ACMG <u>ACT Sheets</u> & Algorithms
- MetabolicPro Nutrient Analysis Program

References

- Bernstein LE, Rohr F, van Calcar S, Eds. Nutrition Management of Inherited Metabolic Diseases: Lessons from Metabolic University. 2nd ed. Springer Nature. 2022.
- Bernstein L, et al. Inconsistencies in the nutrition management of glutaric aciduria type 1: An international survey. Nutrients. 2020;12:3162.
- https://newbornscreening.hrsa.gov/newborn-screening-process. Accessed Mar 8, 2024.
- Martin JA, et al. Births in the United States, 2022. NCHS Data Brief, No. 477. National Center for Health Statistics. 2023.
- Morris AA, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis. 2017;40:49-74.
- SERN/GMDI. MSUD Nutrition Management Guidelines v.1.85. 2021. <u>https://managementguidelines.net/guidelines.php/129/MSUD%20Nutrition%20Guidelines/Version%201.58</u>. Accessed Mar 7, 2024.
- SERN/GMDI. PKU Nutrition Management Guidelines v.2.5. 2002. <u>https://managementguidelines.net/guidelines.php/136/PKU%20Nutrition%20Guidelines/Version%202.5</u>. Accessed Mar 7, 2024.
- SERN/GMDI. PROP Nutrition Management Guidelines v.1.2. 2017. https://managementguidelines.net/guidelines.php/104/PROP%20Nutrition%20Guidelines/Version%201.2. Accessed Mar 8, 2024.
- Strauss KA, et al. Branched-chain α-ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes. Mol Gent Metab. 2020;129:193-206.
- Therrell BL Jr, et al. Inborn errors of metabolism identified via newborn screening: Ten-year incidence data and costs of nutritional interventions for research agenda planning. Mol Genet Metab. 2014;113(1-2):14-26.
- Zschocke J, Hoffman GF. Vademecum Metabolicum. 4th ed. Thieme. 2020.

Please type your questions into the Q&A box.

If there is insufficient time to answer all questions, feel free to e-mail the speaker directly at Rachel.Powers@nutricia.com.

Nutricia Learning Center is provided by Nutricia North America

© 2024 Nutricia North America

Type your questions in the Q&A panel

Make sure you select 'All Panelists'

1. Please provide feedback through the survey - 3 ways to access:

Aim your
smartphon
camera
at this \rightarrow
QR code

OR access the survey at: surveymonkey.com/r/IEM101

To receive your certificate of attendance:

2. Complete the survey (via one of the methods above)

3. Once completed, you will be directed to a PDF of the certificate. Download and save it for your records.

Nutricia Learning Center is provided by Nutricia North America For questions on this webinar or Nutricia's products, please email: <u>NutritionServices@nutricia.com</u> or call: 1-800-365-7354 PLEASE STAY FOR AN OPPORTUNITY AFTER THE LIVE EVENT

OR

after live event: survey

will pop up when you exit