

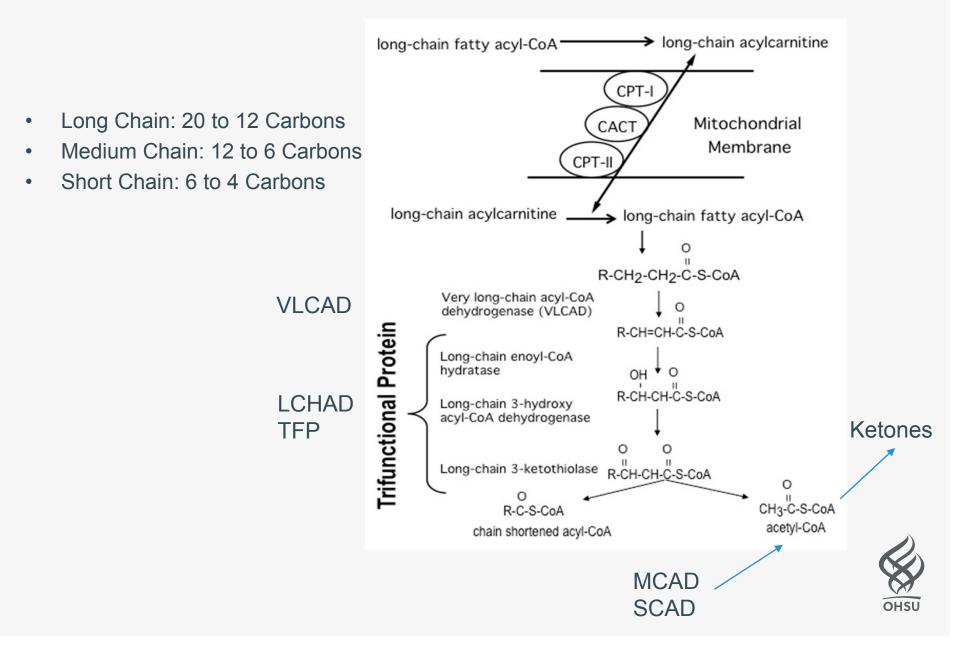
Biochemistry and Management of Fatty Acid Oxidation Disorders: From Infancy to Adulthood

April 20, 2016

Melanie Gillingham, PhD, RD Sandy van Calcar, PhD, RD

Department of Molecular and Medical Genetics Oregon Health & Science University Portland, Oregon

The opinions reflected in this Webinar are those of the speakers and independent of Nutricia North America.



Nutritional Management of Fatty Acid Oxidation Disorders

Melanie Gillingham PhD, RD and Sandy van Calcar PhD, RD Department of Molecular and Medical Genetics Oregon Health & Science University Portland, Oregon

Fatty acid oxidation pathway

Treatment Principles: VLCADD, TFP, LCHADD

- Avoid fasting
- Reduce long chain fatty acids in diet
- Supplement with medium chain fats to bypass enzymatic block
- Assure adequate essential fatty acid intake
- Prevent hypoglycemia
- Aggressive illness management
- Carnitine supplementation?

LC-FAOD Treatment varies: Enzyme defect and severity of defect

- LCHADD and TFP: Always consider severe
- VLCADD:
 - Severe infantile presentation with cardiomyopathy
 - Infantile/childhood presentation with episodes of hypoketotic hypoglycemia
 - Late onset: Rhabdomyolysis later in life
- Last two groups, often asymptomatic with NBS diagnosis.

So, what are fasting limits?

Consider:

Diagnosis
Severity of disease
Health status

Anxiety of parents

Age	# of hours
0 to 1 month	3 to 6
1 to 3 months	4 to 6
4 months	4 to 8
5 months	4 to 8
6 months	4 to 8
7 months	6 to 8
8 months	6 to 10
9 months	6 to 10
10 months	6 to 10
11 months	6 to 10
≥ 12 months	10 to 12
≥ 24 months	10 to 12

Diet composition for neonates with LC-FAOD

Asymptomatic

Symptomatic/Severe

Continuing breastfeeding - with or without formula - may be possible for some

Fat: 40 to 50% of total kcals 20 – 25%E as LCT 20 – 25%E as MCT →50% of fat as LCT →50% of fat as MCT Change to low fat-MCT supplemented formula

Fat: 40 to 50% of total kcals 10 - 15%E as LCT 30 - 40%E as MCT $\rightarrow 20 - 30\%$ of fat as LCT $\rightarrow 60 - 80\%$ of fat as MCT

At this time, we are not good at predicting the degree of treatment required for Asymptomatic infants

Fat content of medical foods used to treat long-chain FAOD in the USA

Formula	Total Fat % kcal	LCF % fat	MCT % fat	LA mg/100g	ALA mg/100g	Ratio N6:N3	DHA/ARA
Enfaport	48	16	84	350	50	7:1	Yes
Lipistart	40	20	78	1767	246	6:1	Yes
Monogen	25	10	90	473	101	4.7:1	No
Portagen	42	13	87	1620	ND	20:1	No
Pregestimil	50	45	55	4700	480	10:1	Yes

Recommended N6:N3 ratio = 5 to 10 : 1

MCT supplementation

- Percent of total kcals needs:
 - Use DRI estimate for kcals
 - 10 to 30% of total kcals as MCT, depending on LCF restriction and age
- Based on weight and age:
 - 2 to 3 g/kg in infancy
 - 1 to 1.25 g/kg after first year
 - (Saudubrey et al, J Inher Metab Dis, 22: 488-502, 1999)

MCT Supplements

MCT Procal

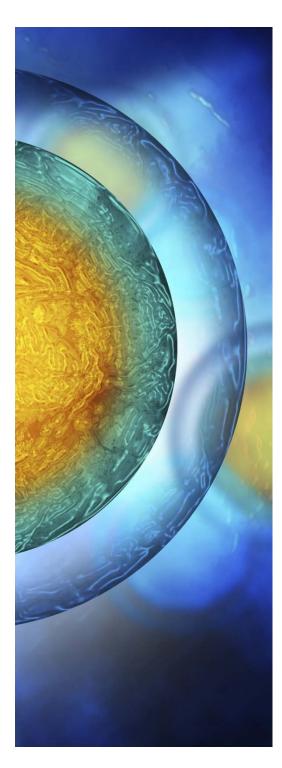
- 92% of kcal as MCT
- 10 g per 16 g powder (16 g = 1 packet or 2 scoops)
- 105 kcal

MCT Oil

- 100% of kcal as MCT
- 14 g per 15 ml (1 Tbsp)
- 116 kcal

THE	
Sie	
Liquigen	
0	

Liquigen


- 96% of kcal as MCT
- 13.5 g per 30 mL (2 Tbsp)
- 135 kcal

Considerations for MCT

- How long to continue formula?
- "MCT Milk"
 - Add MCT to low fat/skim milk
 - Can include additional protein or CHO source if needed
- Add MCT to different foods

MCT Recipe Resources

• MCT Oil

- -Louisville.edu/medschool/pediatrics/wcec/mctfoods
- -<u>FOoD Kitchen</u> = New cookbook from OHSU out in July
- MCT Powder
 - -<u>iMaginative reCipes Tools</u> from VitaFlo

LC-FAOD: Total fat does not need to be reduced

- Total fat can be equivalent to recommendations for age: Based on AI: 45 to 50% of kcals @ 1 month 35% of kcals @ 6 months 30% of kcals @ 1 year
- Counting dietary fat:
 - Mild FAOD: Can use labels
 - Severe FAOD: Count grams of fat to 0.5 g increments

Diet Considerations for older individuals

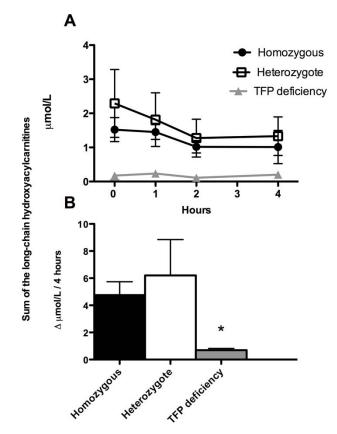
- Energy:
 - Those with severe LC-FAOD may have reduced LBM and lower activity reducing energy needs
 - Consider EER for overweight individuals
 - (Gillingham et al,, Mol Genet Metab 2003)
- Protein: <u>Minimum</u> DRI
- Fat:
 - Need at least 10% of total kcals as MCT
 - Minimum 10% of kcals (? down to 8%) from LCF, otherwise will not meet DRI for fat and meet essential fatty acid needs

LCFA: Monitoring

- Metabolic labs
 - Plasma acylcarnitine profile
 - CK
 - Glucose
 - Liver function
 - Carnitine (total, free, esters)
- Nutrition labs
 - Essential fatty acids
 - Fat soluble vitamins: Consider D, E, A

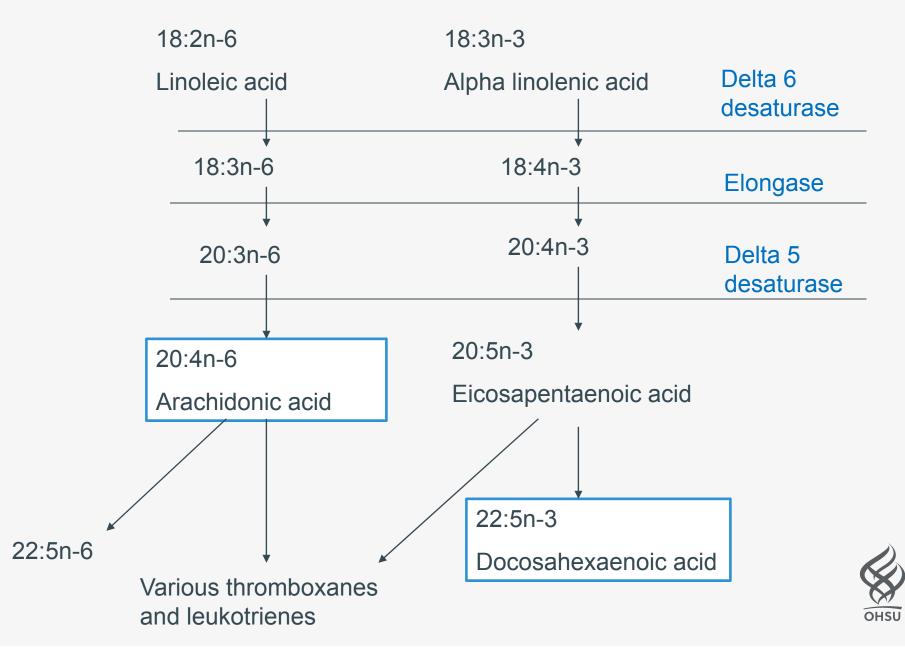
Monitoring: Acylcarnitine Profiles

Normalization of acylcarnitines is possible, especially with mild forms of VLCADD


"Adding up acylcarnitines" VLCADD: C14:0 + C14:1 + C16:0 + C16:1 + C18:0 + C18:1 + C18:2 LCHADD/TFP: C16:0-OH + C16:1-OH + C18:0-OH + C18:1-OH + C18:2-OH Good control = total < 2 umol/L

Best evidence for relationship between acylcarnitine levels and clinical status is for LCHADD

Hydroxyacylcarnitines & Genotype


- Common mutation in TFP of European origin; c.1528G>C
- US population accounts for 80% mutant alleles
 - homozygous or compound heterozygous for c.1528G>C

Gillingham et al, Topics in Clinical Nutrition 2009; vol 24: pp 353-359

Essential Fatty Acid Pathways

Fatty acid profiles: Assessing essential fatty acid status

- ARA/DHA supplementation in formulas improves status
 Interpreting fatty acid profiles
 - Medium chain fatty acids: C8 to C12
 - Expect elevations with MCT supplement
 - Saturated fatty acids: C16:0, C18:0, C20:0
 - Can expect low levels with fat restriction
 - No clinical concern

Fatty acid profiles: Assessing essential fatty acid status

- Interpreting fatty acid profiles
 - N-6 metabolites
 - Linoleic acid = C18:2n-6
 - Arachidonic acid = C20:4n-6
 - Holman ratio: Normal 0.01 0.04; not a sensitive marker
 - Solutions if low
 - Add vegetable oils (safflower, walnut, canola)
 - Lean meats = preformed arachidonic acid

Fatty acid profiles: Assessing essential fatty acid status

Interpreting fatty acid profiles

- N-3 metabolites
 - α -linolenic acid = C18:3n-3
 - Low levels are not of concern
 - EPA = C20:5n-3
 - DHA = C22:6n-3
 - ARA: DHA ratio. Goal < 4; Higher # suggests low n-3 compared to n-6
- Solutions
 - Adding sources of α-LA may not correct low DHA
 - Consider DHA supplementation

LC-FAOD and Illness: At Home Management

- Symptoms develop from FAO metabolites <u>before</u> hypoglycemia develops:
 - Do not use glucose meters
- Avoidance of fasting essential
 - 4 hours max for most ages
- Calories, calories, calories
 - Simple carbohydrate needed
 - Provide intake goal to caregivers

A diagnosis of "mild" VLCADD doesn't mean there isn't a risk of decompensation

J Inherit Metab Dis DOI 10.1007/s10545-009-9041-6

CASE REPORT

Genotype-phenotype correlations: sudden death in an infant with very-long-chain acyl-CoA dehydrogenase deficiency

Curtis R. Coughlin II · Can Ficicioglu

This child died at age 38 hours (prior to NBS) with hypoglycemia. No cardiac involvement. Had genotype associated with mild disease, V283A.

Glucose Polymer Protocol for Acute Management

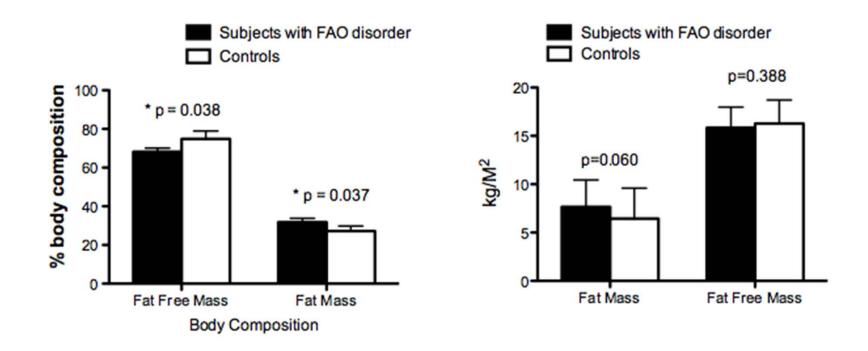
Age	Glucose polymer (%)	Dose mL/kg/h	Fluid requirement mL/kg/day	Energy
0–6 months	15	7.7	183	110
6-12 months	15	7.0	168	100
1-3 years	20	4.5	110	90
3-6 years	25	3.3	80	80
6-12 years	25	2.6	65	65
or 6-12 years	30	2.25	54	65
12-15 years	30	1.8	42	50
>15 years	30	1.6	38	45

Table 2

American household measures for glucose polymer solutions and caloric densities.

15% solution	15 g in 100 mL	8 tsp in 4 fl oz.	60 kcal/dL, 16.8 kcal/fl oz
20% solution	20 g in 100 mL	11 tsp in 4 fl oz.	80 kcal/dL, 22.4 kcal/fl oz
25% solution	25 g in 100 mL	41/2 tb in 4 fl oz.	100 kcal/dL, 28 kcal/fl oz
30% solution	30 g in 100 mL	51/2 tb in 4 fl oz.	120 kcal/dL, 33.6 kcal/fl oz

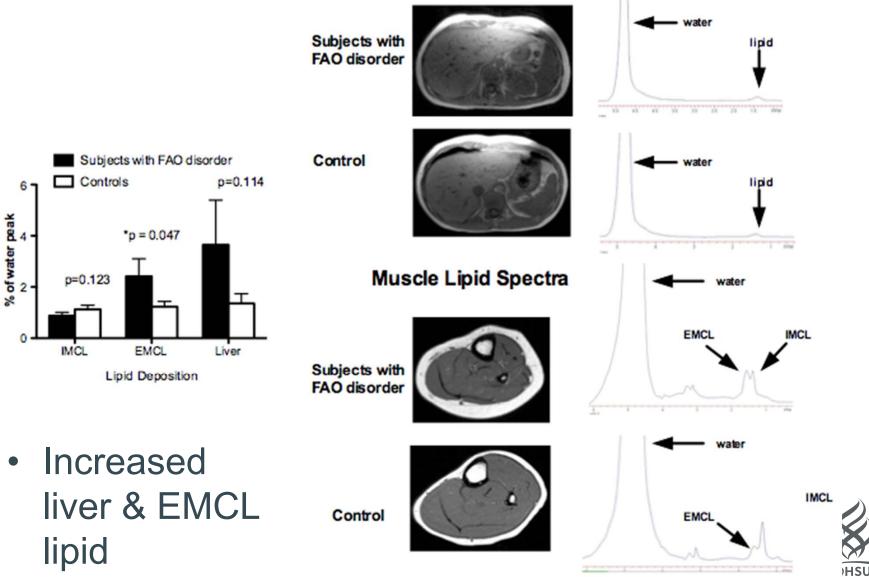
Legend: tsp, teaspoon (5 mL); tb, tablespoon (15 mL); fl oz, fluid ounce (30 mL).



Carbohydrate Solutions for FAOD Illness

Concentration	Rehydration Soln (Pedialyte) 4 kcal/oz	Juice/Gatorade 15 kcal/oz	PolyCal®
15%	8 oz		4 Tbsp + 2 tsp
(17 kcal/oz)	240 ml		30 g
20%	8 oz		6 Tbsp + 2 tsp
(22 kcal/oz)	240 ml		40 g
20%		8 oz	2 Tbsp +2 tsp
(22 kcal/oz)		240 ml	18 g
25%		8 oz	4 Tbsp + 2 tsp
(28 kcal/oz)		240 ml	30 g
30%		8 oz	6 Tbsp + 2 tsp
(34 kcal/oz)		240 ml	40 g

Altered Body Composition



- Lower lean mass; higher fat mass in subjects with same BMI compared to controls
- Due to increase in fat mass

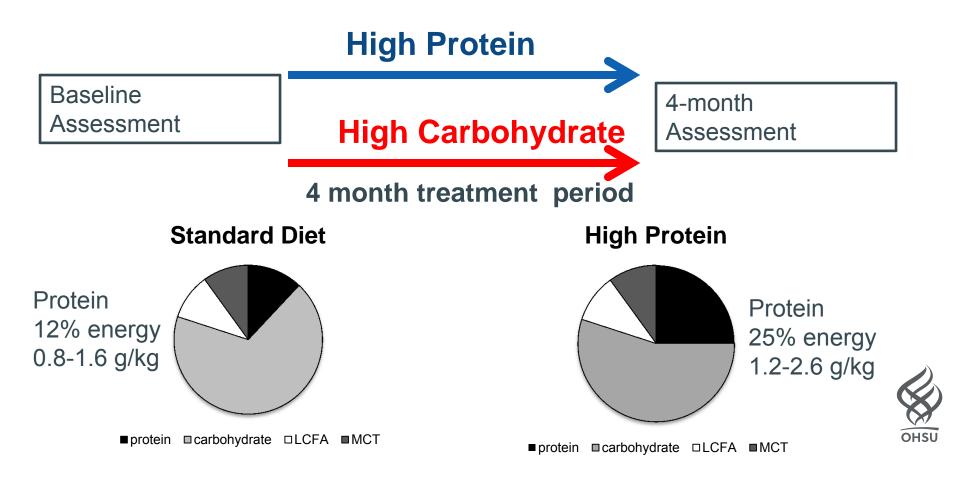
Liver and Muscle Lipid Deposition

Liver Lipid Spectra

Nutrition Therapy for adolescents & adults

Chronic complications

- Muscle pain/fatigue
- Recurrent rhabdomyolysis
- LCHAD: retinopathy/peripheral neuropathy

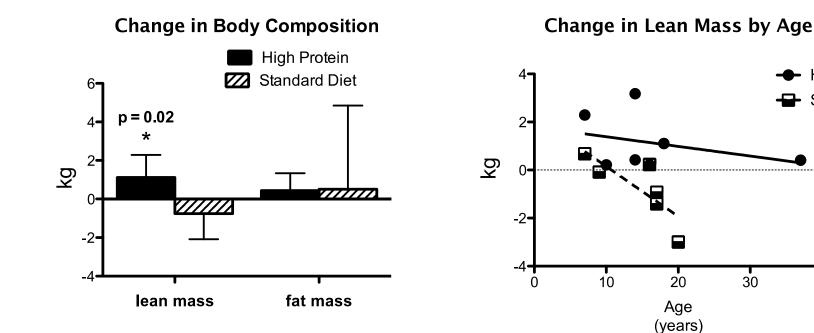

Nutrition Therapy

- Promote normal body composition
 - Lean body mass
 - Normal fat mass
- Provide appropriate energy
- Prevent or decrease episodes of rhabdomyolysis

Increased Protein

 Randomized 13 subjects with long-chain FAO disorder to high carbohydrate diet or high protein diet for 4 months

Increased Protein Intake



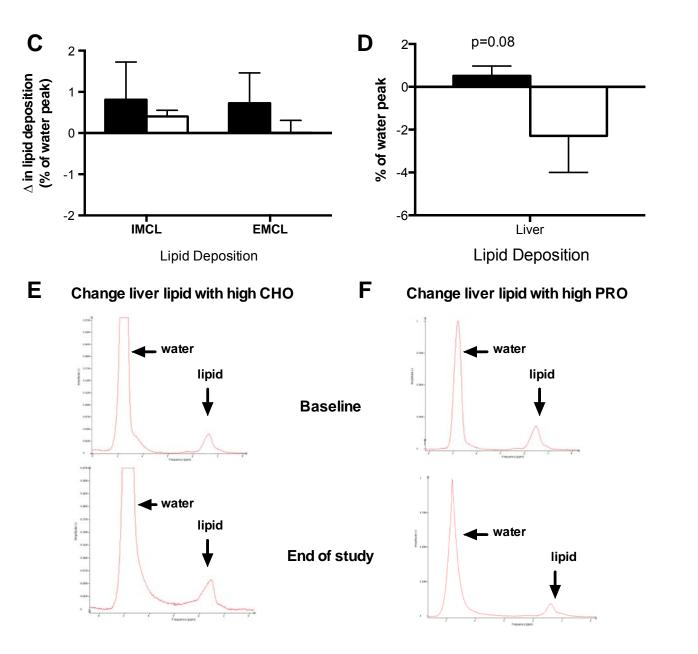
What did they really eat at home? Based on 3-day diet records....

Standard Diet Protein 14% energy 0.70-1.5 g/kg High Protein Diet Protein 19% energy 0.8-2.0 g/kg

High Protein Diet Increased Lean Mass

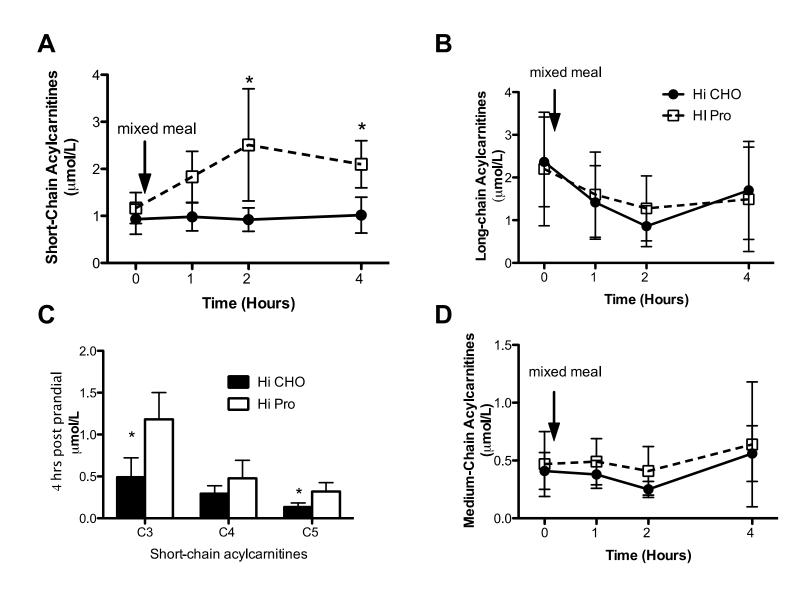
High protein increased lean mass.

Lean mass loss in older subjects on standard diet.



High Protein

40

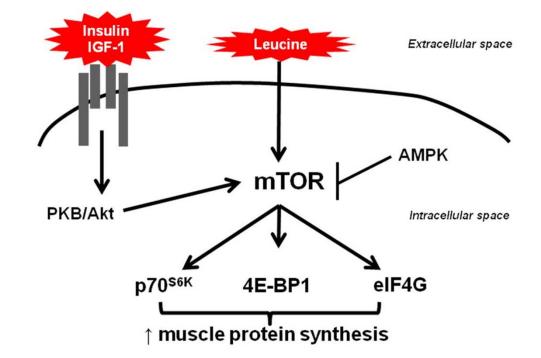

Standard Diet

High Protein Diet lowered Liver Lipid

Acylcarnitines

Increased Protein Intake

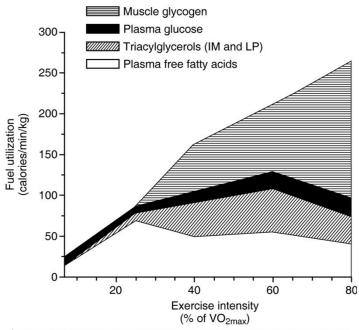
Maintain lean body mass


- Larger reserves against muscle loss with rhabdomyolysis?
- Lower liver lipid content
- Maintain metabolic control
- No hypoglycemia with decreased carbohydrate intake

Note: Included children >7 yr of age and older. May not be appropriate for infants and toddlers

Benefits of Whey Protein?

- High in branched-chain amino acids
- Leucine stimulator of muscle protein synthesis via mTOR signaling
- 20% of protein in cow's milk is whey


http://www.efdeportes.com/efd131/leucinestimulates-mtor-and-muscle-proteinsynthesis.htm

Optimizing exercise

Pre-exercise

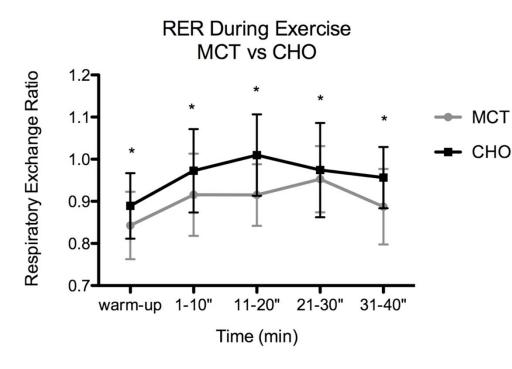
- Simple carbohydrates
- MCT

- Carbohydrates
- Protein

Patients with FAO disorders depend on muscle glycogen & plasma glucose during exercise.

- MCT spares glycogen during exercise.
- CHO:pro mix stimulates glycogen resynthesis post-exercise

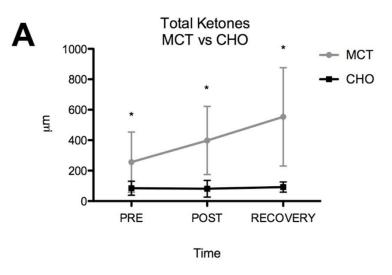
Post-exercise


⁽Data from Romijn JA. Coyle EF, Sidossis LS, Gastaldell A, Horowitz JF, Endert E, Wolfe RR [1993] Regulation of endogenous fat and carbohydrate metabolism in relation to averosis intensity and duration. Am J Physiol 265 6380–6397; and van Loon L/G, Greenhaft PL, Constantin-Teodosiu D, Saris WHM, Wagenmakers AJM [2001] The effects of increasing exercise intensity on music fau kell station in human. J Physiol 358 265).

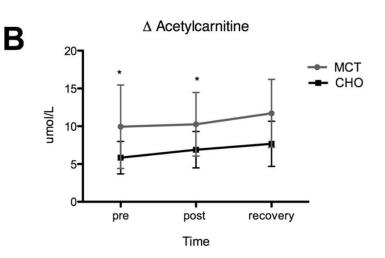
Moderate Intensity Exercise

- Randomized cross-over
 - 1 gm CHO per kg lean mass
 - 0.5 gm MCT per kg lean mass
- Warm-up at 1.5 mile/hr X 3 min
- Speed and grade @ 60% max HR X 40 min
 - 220-age (yrs) = estimated max HR
- Repeat same speed and grade

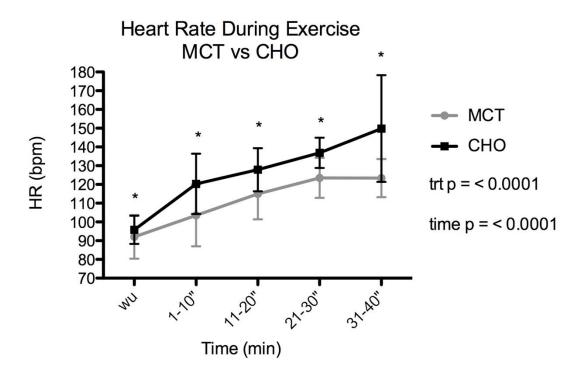
MCT lowers RQ



- MCT ♥ RQ during warm-up
- Lower RQ throughout exercise
- Oxidized more fat during that bout of exercise



MCT increases Ketones



- Ketones increased
 - prior to exercise
 - further with exercise

- Acetylcarnitine
 increased
 - prior to exercise
 - enhanced acetyl-CoA synthesis

Lower Heart Rate

 Lower heart rate <u>during</u> exercise for same work

MCT prior to exercise

- Exercised ≈ 40 subjects with long-chain FAOD @ 60% estimated max heart rate
 - No episodes of rhabdomyolysis
 - − No ↑ CPK; even when elevated at baseline
- MCT improves biochemical & physiological parameters
- Lowers incidence of rhabdomyolysis?
- Routine exercise prescription might be best rhabdomyolysis prevention.

Optimizing exercise

Pre-exercise

- 6-8% glucose solution such as Gatorade, apple juice
- Mix with 0.1-0.2 gm MCT per kg body weight
- Consume 20-45 min before exercise

Examples:

- 70 kg man consume
 - 7-14 gm MCT oil mixed with 8 oz Gatorade
 - 1-2 TBSP Liquigen with 8oz apple juice

Optimizing exercise

Post-exercise

- 3:1 ratio of carbohydrate to protein snack
- Consume in first 45 min post exercise to maximize glycogen resynthesis
- 100-200 kcal for adults

Examples:

- Chocolate milk
- Apple or pretzels with 1oz. low-fat cheese
- Berries & fat-free Greek
 yogurt
- Fruit smoothie
- ½ slice whole wheat toast & egg white

An Excellent Reference

Nutrition Management of Inherited Metabolic Diseases

> Lessons from Metabolic University

Laurie E. Bernstein Fran Rohr Joanna R. Helm *Editors*

D Springer

Thank You

Viewers interested in obtaining a Certificate of Attendance for 1 credit hour please visit:

www.NutriciaLearningCenter.com

Event code:

Please complete our survey—the code will appear at the end

For question on this Webinar or Nutricia's products, please email:

NutritionServices@nutricia.com

or call:

1-800-365-7354

