

ESTABLISHING THE MICROBIOME IN EARLY LIFE.

The role of prebiotics in infant nutrition and why it matters in infants with IEMs.

JANUARY 26, 2021

1

Kelly Tappenden, PhD, RD, FASPEN

Professor and Department Head
Department of Nutrition and Kinesiology
University of Illinois at Chicago

Editor-in-Chief, Journal of Parenteral and Enteral Nutrition

DISCLOSURES

Dr. Kelly Tappenden received an honorarium provided by Nutricia for this presentation.

The above does not pose a conflict of interest for this presentation.

The opinions reflected in this presentation are those of the speaker and independent of Nutricia.

2

OUTLINE

- 1. Understand the important of the intestinal microbiome;
- 2. Describe the role of prebiotics in infant nutrition;
- 3. Prebiotics in infants with inborn errors of metabolism

A WORD UP FRONT...

This presentation will focus on **PRE-biotics**, not PRO-biotics.

- PRE-biotics are substrates that are selectively utilized by host microorganisms, conferring a health benefit (Gibson, et al., 2017)
- PRO-biotics are *live* microorganisms which when administered in adequate amounts confer a health benefit on the host (Hill et al., 2014)

Gibson, et al. (2017) Nat Rev Gastroenterol Hepatol. 14:491-502. Hill, et al. (2014) Nat Rev Gastroenterol Hepatol. 11(8):506-14.

5

FUNCTIONS OF THE INTESTINAL MICROBIOTA

Functions	Mechanisms/Effects
Protective functions against pathogenic bacteria	 Pathogen displacement Nutrient competition Production of antimicrobial factors Activation of local immune response Contribute to the intestinal barrier function
Immune development	 IgA production Control of local and general inflammation Tightening of junctions Induction of tolerance to foods
Digestive and metabolic functions	 Vitamin production Fermentation of nondigestible CHO → SCFA Dietary carcinogens metabolism
Neuronal development	 Modulation of brain gut axis during neuronal development Motor control and anxiety behavior

Buccigrossi et al. (2013) Curr Opin Gastroenterol. 29:31–38

THE GUT MICROBIOTA ACTS AS A BARRIER AGAINST PATHOGENS

The healthy balanced gut microbiota acts a barrier against the infiltration and colonization and infiltration of pathogens, thereby protecting the infant against infections 1,2

EXAMPLES OF FACTORS IN A HEALTHY BALANCE GUT MICROBIOTA THAT PREVENT

1. Knol J. et al. (2005) Acta Pædiatrica. 94 (Suppl 449): 31–33.

2. Zhang M, et al. (2017) Front Immunol.8:942

9

STIMULATE INTESTINAL IMMUNITY (GALT)

THE DEVELOPMENT OF IMMUNE SYSTEM THROUGH THE GUT

70% of all immune cells are organized in the gut associated lymphoid tissue.

Immune maturation depends on gut microbiota signals.

FACTORS DISRUPTING MICROBIAL HOMEOSTASIS DURING EARLY LIFE AND DEVELOPMENT OR PROTECTION AGAINST DISEASES

Disruptive factor	Study	Cohort characteristics	Outcomes
C-section	Sevelsted et al. ²⁵	1.9 million Danish term children, ages 0-15 years	Asthma, systemic connective tissues disorders, juvenile arthritis, IBDs, immune deficiencies and leukemia
	Huh et al. ²⁶	1,255 US children, age 3 years	Obesity, higher body-mass index and sum of skinfolds
	Eggesbø et al. ²⁷	2,803 Norwegian children, 0-2 years	Reactions to egg, fish or nuts, and a fourfold increase in egg allergy
Antibiotic treatment	Risnes et al. ⁴³ Hoskin-Parr et al. ⁴⁴	1,401 US children, ages 0-6 months 5,780 UK children, ages 0-2 years	Asthma and allergy Asthma and eczema
	Saari et al. ¹⁵⁰	12,062 Finnish children, ages 0-2 years	Overweight and obesity
	Schwartz et al. ¹⁵¹	163,820 US children ages 2-18 years	Weight gain
	Kronman et al. ⁴⁸	9 million UK children	IBD development
Probiotics Maldonado et al. Braegger et al. ⁷⁶	Maldonado et al.89	215 Spanish children, ages 0-6 months	Reduction in gastrointestinal and upper respiratory tract infections
	Braegger et al. ⁷⁶	ESPGHAN Committee on Nutrition	Reduction in nonspecific gastrointestinal infections
Diet supplements	Zimmerman et al. ⁹³	Iron, 139 African children, ages 6-14 years	Intestinal inflammation, lower frequency of colic or irritability
Hygiene	Hesselmar et al. ⁹⁶	184 children, pacifier cleaning, ages 0-3 years	Lower risk of developing asthma, allergy and sensitization
Pets	Virtanen et al. ⁹⁹	3,143 Finnish children, ages 0-1 year	Reduction in risk of preclinical type I diabetes

DYSBIOSIS IN INBORN ERRORS OF METABOLISM

The majority of studies on microbiome-IEM interactions have focused on PKU, with 1 study in HCU.

Study	Population	Microbiota composition changes
Pinheiro de Oliveira et al. (2016) - PKU	Compared the microbiome of 8 patients with PKU (ages 4.24 \pm 1.74) to that of 10 healthy individuals	↓ levels of families Clostridiaceae, Erysipelotrichaceae, and Lachnospiraceae, class Clostridiales, genera Coprococcus, Dorea, Lachnospira, Odoribacter, Ruminococcus, and Veillonella. ↑ levels of Prevotella, Akkermansia, and Peptostreptococcaceae populations.
Elvira Verduci et al. (2018) - PKU	Compared gut microbiome of individuals ages 4- 18: 21 with PKU on a low-Phe diet versus 21 with mild hyperphe on an unrestricted diet (same population for both studies	\downarrow overall microbial diversity & decreased fecal butyrate; specifically decrease in Faecalibacterium spp. & Roseburia spp.
Giulia Bassanini et al. (2019) - PKU		↓ Faecalibacterium spp. ↑ Blautia spp. and Clostridium spp (family Lachnospiraceae).
Gustavo Rizowy et al. (2020) - HCU	Compared fecal microbiota of 6 HCU patients (avg age 25) with age-matched healthy individuals	↑ levels of Eubacterium coprostanoligenes group and underrepresentation of the Alistipes, Family XIII UCG-001, and Parabacteroidetes genera Groups had similar gut microbiota diversity despite differences in the abundance of certain genera

Pinheiro de Oliveira, et al. (2016) PLoS ONE. 11(6): e0157513. Verduci, et al (2018) Nutrition, Metabolism & Cardiovascular. 28, 385e392 Bassanini et al. (2019) Front Cell Infect Microbiol. 9:101. Rizowy et al. (2020) Biochimie. 173:3-11.

HUMAN MILK IS BEST FOR INFANT HEALTH References

PREBIOTIC HMOs: A KEY COMPONENT OF HUMAN MILK

HMOs HAVE A MULTITUDE OF FUNCTIONS

Prebiotic Effect: **Growth and Activity** of Beneficial Bacteria

- Brand-Miller et al. (1998), J Pediatr. 133:95-98.
- György et al. (1974) Eur J Biochem. 43:29.

Brain Building Blocks

- Hart et al (2003) Journal of Pediatric Psychology, 28(8) 529–534.
 Wang et al (2003) Am J Clin Nut 78: 1024– 1029
 Stacey et al (2005) JACS
 Murrey et al. (2006) PNAS;103

Direct Effect on **Immune Cells**

- Eiwegger et al. (2004) Pediatr Res. 56:1–5.
 Bode et al. (2004) Thromb Haem. 92:1402-10.
- 92:1402-10.

 Eiwegger et al. (2010) PAI. 21(8):1179-88.

Anti-Infective Effect as **Receptor Analogues**

- Boehm & Stahl (2002), In: Mattila-Sandholm T(ed): Funct. Dairy prod. Woodhead Publ Ltd.
 Newburg et al. (2004), Glycobiology
 Coppa GV et al. (1990) Lancet

23

CAN NUTRITIONAL FORMULAS BE MODIFIED TO ALTER THE INTESTINAL MICROBIOTA AND **IMPROVE CLINICAL OUTCOMES IN CHILDREN?**

scGOS/IcFOS SUPPORTS MICROBIOTA BY DISCOURAGING THE GROWTH OF POTENTIAL PATHOGENS

Target population Preterm

Conclusions

Supplementation of a preterm formula with scGOS/IcFOS sign decreases the sum of pathogens. Also the sum of pathogens as % of total bacterial count was lower than control.

Study design

25 preterm infants

- 0.0g scGOS/lcFOS [Control] (n=15)
- 1.0 g/100ml scGOS/lcFOS (n=12)

scGOS/IcFOS sign reduces the number of clinically relevant pathogens in stools of preterm infants

Knol J. et al. (2005) Acta Pædiatrica. 94 (Suppl 449): 31-33.

27

scGOS/IcFOS REDUCES INFECTIONS DURING THE FIRST 6 MONTHS OF LIFE

Target population Healthy infants

Conclusions

 $0.8\,\mathrm{g}/100\mathrm{ml}$ scGOS/lcFOS reduced the number of infectious episodes during the first 6 months of life.

Study design

Randomized, double blind, controlled study; Healthy, term infants with parental history of atopic eczema, allergic rhinitis, or asthma:

- 0.0 g scGOS/IcFOS [Control] (n=104)
- 0.8 g/100ml scGOS/lcFOS (n=102)

scGOS/lcFOS results in lower incidence of infections over time

Arslanoglu et al. (2007). Journal of Nutrition 137:2420-2424

scGOS/IcFOS REDUCES INFECTIONS AND INCIDENCE OF ALLERGIC MANIFESTATIONS DURING THE FIRST 2 YRS OF LIFE

Target population Healthy infants

Conclusions

Early nutritional intervention with 0.8 g/100ml scGOS/lcFOS is effective in priming the infant's immune system, providing substantial protection against both allergy and infection.

Study design

Randomized, double blind, controlled study; Healthy, term infants with parental history of atopic eczema, allergic rhinitis, or asthma; for 2 years:

- 0.0 g scGOS/IcFOS [Control] (n=68)
- 0.8 g/100ml scGOS/lcFOS (n=66)

Arslanoglu et al.(2008) Journal of Nutrition.138:1091-1095

29

scGOS/IcFOS REDUCES INTESTINAL INFECTIONS

Target population Healthy infants

Conclusions

These data show that scGOS/IcFOS~0.4~g/100~ml reduced intestinal infections in healthy infants during the first year of age.

Study design

A prospective, randomized, controlled, open trial. Healthy infants aged between 15 and 120 days were enrolled in two intervention groups; formula feeding for 12 months

- 0.0 g scGOS/lcFOS [Control] (n=105)
- 0.4 g/ 100mL scGOS/lcFOS (n=96)

Bruzzese et al. (2009) Clinical Nutrition. 28:156-161

USE OF FORMULA WITH scGOS/IcFOS PREBIOTICS RESULT IN POSITIVE SHORT- AND LONG-TERM HEALTH ECONOMIC BENEFITS

- Prebiotic cost = €51
- Quality Adjusted Life Years = 0.108
- Incremental cost-effectiveness ratio = € 472

31

PREBIOTICS FOR INFANTS WITH IEM

There is no indication that infants with IEM should be any different from healthy infants when it comes to prebiotics (with the potential exception of MMA/PA patients).

DYSBIOSIS IN INBORN ERRORS OF METABOLISM

The majority of studies on microbiome-IEM interactions have focused on PKU, with 1 study in HCU.

Study	Population	Microbiota composition changes
Pinheiro de Oliveira et al. (2016) - PKU	Compared the microbiome of 8 patients with PKU (ages 4.24 ± 1.74) to that of 10 healthy individuals	↓ levels of families Clostridiaceae, Erysipelotrichaceae, and Lachnospiraceae, class Clostridiales, genera Coprococcus, Dorea, Lachnospira, Odoribacter, Ruminococcus, and Veillonella. ↑ levels of Prevotella, Akkermansia, and Peptostreptococcaceae populations.
Elvira Verduci et al. (2018) - PKU	Compared gut microbiome of individuals ages 4- 18: 21 with PKU on a low-Phe diet versus 21 with mild hyperphe on an unrestricted diet (same population for both studies	→ overall microbial diversity & decreased fecal butyrate; specifically decrease in Faecalibacterium spp. & Roseburia spp.
Giulia Bassanini et al. (2019) - PKU		↓ Faecalibacterium spp. ↑ Blautia spp. and Clostridium spp (family Lachnospiraceae).
Gustavo Rizowy et al. (2020) - HCU	Compared fecal microbiota of 6 HCU patients (avg age 25) with age-matched healthy individuals	↑ levels of Eubacterium coprostanoligenes group and underrepresentation of the Alistipes, Family XIII UCG-001, and Parabacteroidetes genera
		Groups had similar gut microbiota diversity despite differences in the abundance of certain genera

Pinheiro de Oliveira et al. (2016) PLoS ONE 11(6): e0157513. Verduci et al (2018) Nutrition, Metabolism & Cardiovascular. 28, 385e392 Bassanini et al. (2019) Front Cell Infect Microbiol. Apr 16;9:101. Rizowy et al. (2020) Biochimie.173:3-11.

33

scGOS/IcFOS IN AMINO ACID FORMULA SUPPORTS MICROBIOME IN **INFANTS WITH PHENYLKETONURIA**

Use of PKU infant formula with scGOS/lcFOS in pilot study with 9 infants: 8-week, open label intervention

- Well tolerated
- Lowered pH
- Maintained levels of bifidobacteria

MacDonald et al. (2011) Mol Gen Metab.104:S55-S59

USAGE OF PREBIOTICS: POTENTIAL CONCERN FOR MMA/PA PATIENTS?

Propionate production in MMA/PA patients

- 52% amino acid catabolism
- ~ 25% attributed to gut bacteria
- ± 30% unaccounted

Thompson et al. (1990) Metabolism. 39(11):1133-1137

35

LOWER GUT pH RESULTS IN LOWER PROPIONATE PRODUCTION

- · Study: Fecal inocula from healthy adult volunteers
- Gut pH has influence on short-chain fatty acid production (incl. propionate)

Gut pH	Propionate production
pH 6.4	Occurred
pH 5.9	Inhibited
pH 5.2	Curtailed

Effect of initial p H on net production of the major SCFA from 24-h batch culture incubations with a mixture of carbohydrates. Error bars indicate standard errors of the means, ND, not detected.

Belenguer A et al. (2007) Applied and Environmental Microbiology. 6526-6533

RESEARCH SHOWS scGOS/IcFOS MAY HELP REDUCE PROPIONATE PRODUCTION IN THE GUT.

PREBIOTICS MAY HAVE A BENEFICIAL EFFECT

37

REDUCED PROPIONATE PRODUCTION IN HEALTHY INFANTS FED scGOS/IcFOS INFANT FORMULA

 Randomized DBPC with 53 infants, fully formula-fed, were given either formula with or without scGOS/IcFOS

Results:

- Higher bifidobacteria proportion → influence on SCFA production
- Lower pH
- · Increased acetate and lower propionate

REDUCED PROPIONATE PRODUCTION IN HEALTHY INFANTS FED scGOS/IcFOS INFANT FORMULA

- Randomized DB study with infants fed 3 different types of formulas
- •"Infants fed the scGOS/IcFOS formula had higher percentages of acetate and <u>lower percentages of propionate</u>, butyrate ...compared with infants fed the standard ... formula."

Bakker-Zierikzee et al. (2005) British Journal of Nutrition. 94:783-790

39

RECENT EXPERT OPINION ON GUT MICROBIOTA IN MMA/PA

Dietary management of MMA/PA may be improved by specific prebiotics that modify gut microbiota to stabilize or possibly reduce PA production

- Gut microbiota is a potentially modifiable target for propionate production.
- Propiogenic prebiotics should be avoided to stabilize PA production.
- · Specific prebiotics may reduce propionate production in the gut.

Burlina et al. (2018) . Expert Opinion on Orphan Drugs. 6:(11) 683-692

TAKE HOME MESSAGES

- Prebiotic fiber is fermented by the commensal microbiota and hence stimulates the important biological functions of the microbiota previously outlined and corrects the dysbiosis associated with various diagnoses.
- Infants with inborn errors of metabolism may benefit from the addition of scGOS/lcFOS to (metabolic) infant formulas, especially as we learn more about dysbiosis in this patient population.
- There does not seem an additional risk for gut propionate production when providing GOS/FOS to MMA/PA patients.

41

WE NEED TO CONSIDER (AND FEED) THE COMPLEX ECOSYSTEM Probiotics Healthy Child

THANK YOU!

QUESTIONS?

43

PLEASE PROVIDE US WITH YOUR FEEDBACK

YOU CAN EITHER SCAN THE QR CODE OR

FOR US PARTICIPANTS ONLY:
PLEASE LOOK OUT FOR A SEPARATE EMAIL FROM NUTRICIA REGARDING CE CREDITS

FILL OUT THE SURVEY AS YOU EXIT THE WEBINAR