Nutricia North America Medical and Scientific Affairs www.NutriciaLearningCenter.com

Ketogenic Diet and the Management of Genetic Epilepsy

Ara S. Hall, MD 11/17/22

Disclosures

- □ I served as a local PI for three studies of perampanel in children, sponsored by Eisai[®]. These studies are now closed.
- I have taught use and programming of Vagal Nerve Stimulators for LivaNova[®].
- I may discuss off-label use of several medications in my presentation.
- I received honoraria for this presentation from Nutricia North America.

The opinions reflected in this presentation are those of the speaker and independent of Nutricia North America

2

Learning Objectives	
 Participants in this activity will: Discover which genetic epilepsies may benefit from a medical l diet. 	ketogenic
Recognize unexpected side effects that may occur in patients we epilepsies and determine if it is related to the medical ketogenic genetic disorder.	•
 Determine appropriate candidates and expectations for succes implementation of a medical ketogenic diet in a patient with a g disorder. 	
© 2022 Nutricia North America	

What is a genetic disease?

 A genetic disease is caused in whole or in part by a change in the DNA sequence away from the normal sequence.

https://www.genome.gov/For-Patients-and-Families/Genetic-Disorders

What is a genetic disease?

- □ Mutation in one gene
 - Cystic fibrosis
 - Tay-Sachs
 - Sickle cell anemia

https://www.genome.gov/For-Patients-and-Families/Genetic-Disorders

5

What is a genetic disease?

- □ Mutation in one gene
- Mutations in multiple genes
- Combination of gene mutations and environment
- Damage to chromosomes

https://www.genome.gov/For-Patients-and-Families/Genetic-Disorders

What is a genetic disease?

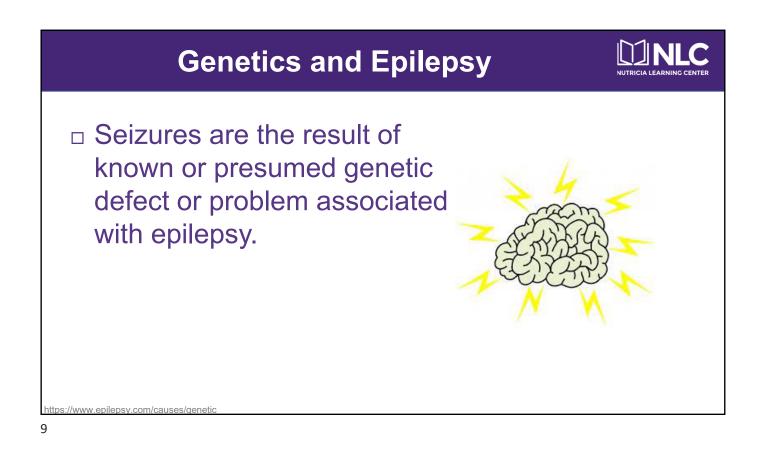
 Damage to chromosomes
 Trisomy 21
 Cri du chat syndrome

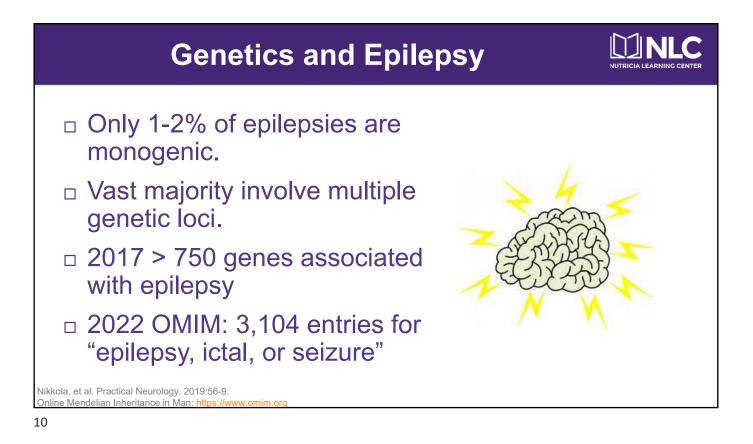
Multiple genes are affected.

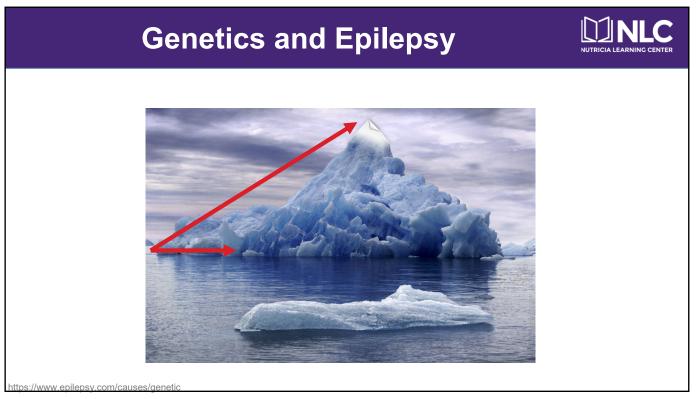
laiasu. Maedica (Bucur). 2017;12:208-13

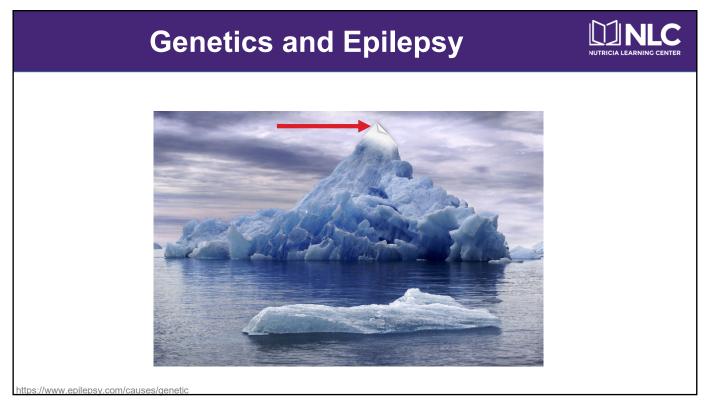
7

What is a genetic disease?

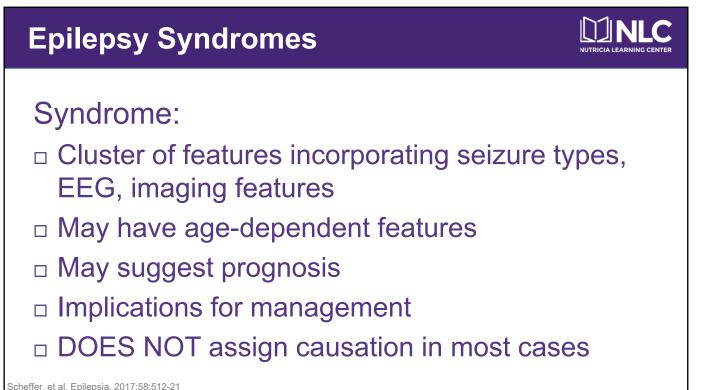

Calling a disease "genetic" DOES NOT imply inheritance


https://www.genome.gov/For-Patients-and-Families/Genetic-Disorders





	DSY Syndromes
<image/>	


Epilepsy Syndromes

NUTRICIA LEARNING CENTER

There are number of well-defined pediatric epilepsy syndromes:

- Childhood absence epilepsy
- West syndrome
- Dravet syndrome
- Doose syndrome

Scheffer, et al. Epilepsia. 2017;58:512-2

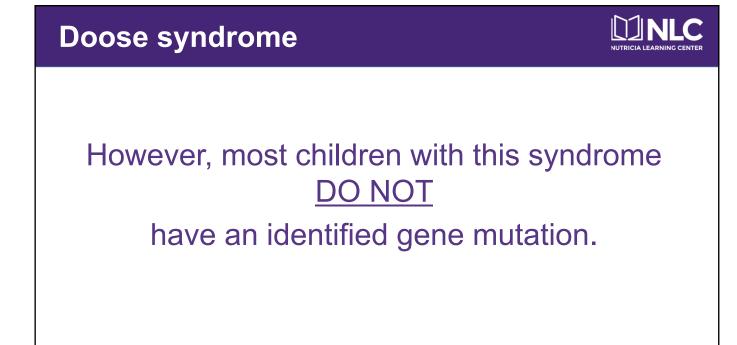
Epilepsy Syndromes vs Genetics

It's Complicated

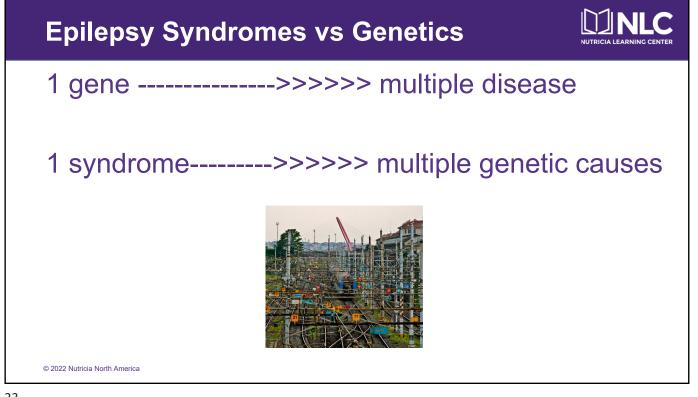
Dravet syndrome	
 Onset of seizures in first year of life Normal early development Fever induced seizures first, often prolonged Over time, develop multiple seizure ty Most children are developmentally de 	•
https://www.omim.org/entry/607208?search=Dravet&highlight=dravet	

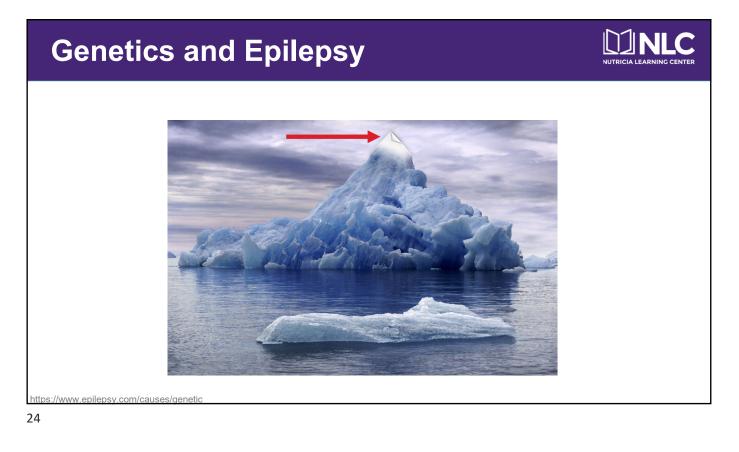
Dravet syndrome

Most cases are causes by mutations in the SCN1A gene


Epilepsy Genetics	
 SCN1A mutations also cause: Developmental and epileptic encephalopathy 6B, non-Dravet Familial febrile seizures Generalized epilepsy with febrile seiz plus 	ures
https://www.omim.org/entry/182389?search=SCN1A&highlight=scn1a	

Doose syndrome

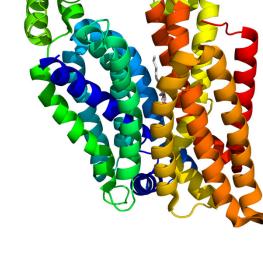

- D Myoclonic or myoclonic-atonic seizures
- Prognosis is variable
- In 1/2 of children have normal development or only mild delays
- Other cases have intractable seizures and cognitive regression
- □ Seizures stop in 54% to 89% of cases


Wirrell. Continuum (Minneap Minn). 2016;22:60-93

Doose syndrome	
Mutations in all of the following genes been identified in Doose syndrome:	have
SCN1A	
SCN1B	
SCN2A	
SLC2A1	
CHD2	
SYNGAP1	
KIAA2022	
Hernandez, et al. https://www.epilepsy.com/what-is-epilepsy/syndromes/myoclonic-atonic-epilepsy-doose-syndrome. Accessed Octo	ber 25, 2022, 2019.

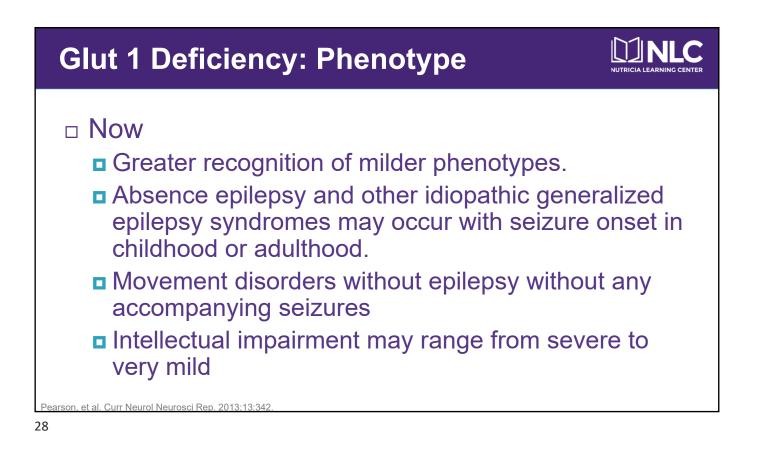
Hernande:

Ketogenic Diet and Genetic Epilepsies



25

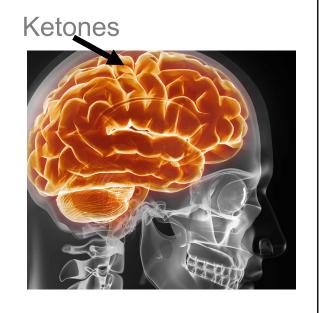
Glut 1 Deficiency


Classic genetic disorder whose most effective treatment remains ketogenic diet

SLC2A1

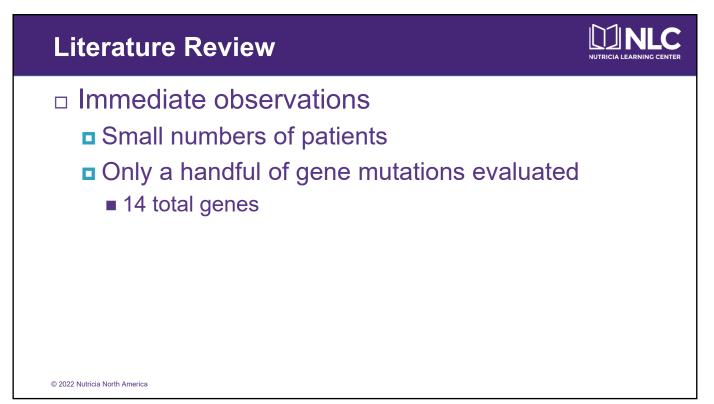
© 2022 Nutricia North America

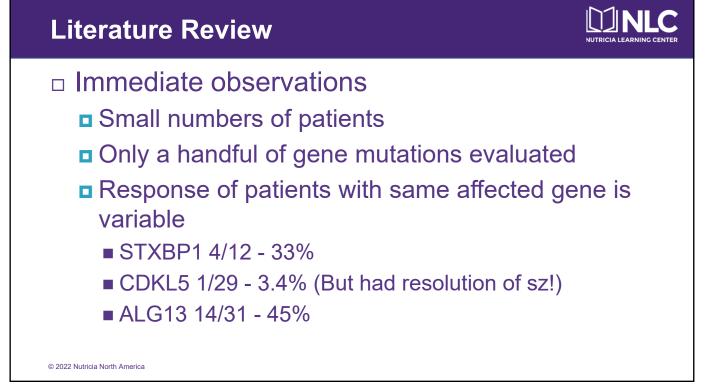
Glut 1 Deficiency: Phenotype Initially described as Developmental encephalopathy Infantile onset, refractory epilepsy Cognitive impairment - moderate to severe Mixed motor abnormalities including spasticity, ataxia, and dystonia

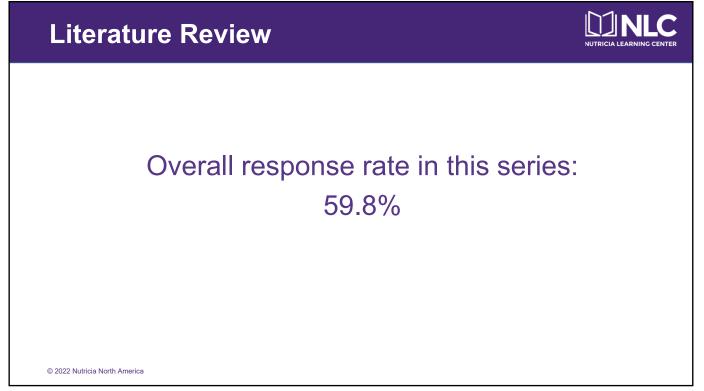


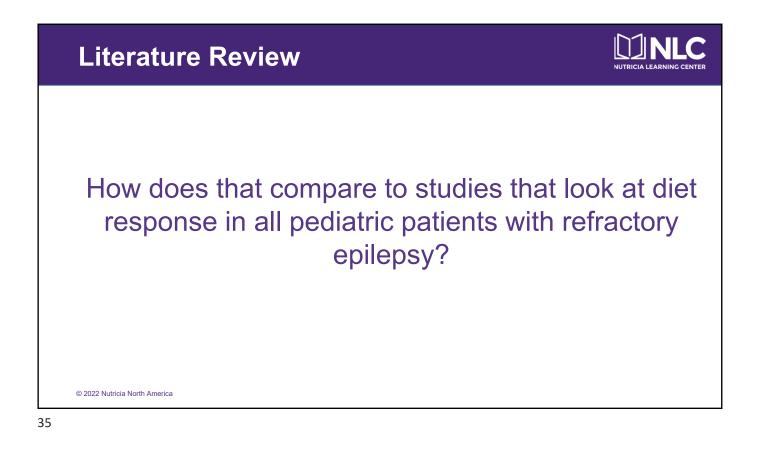
INI

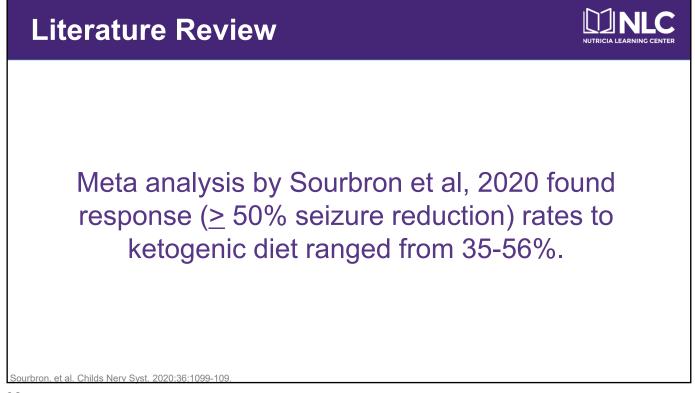
Disorder of energy availability in the brain

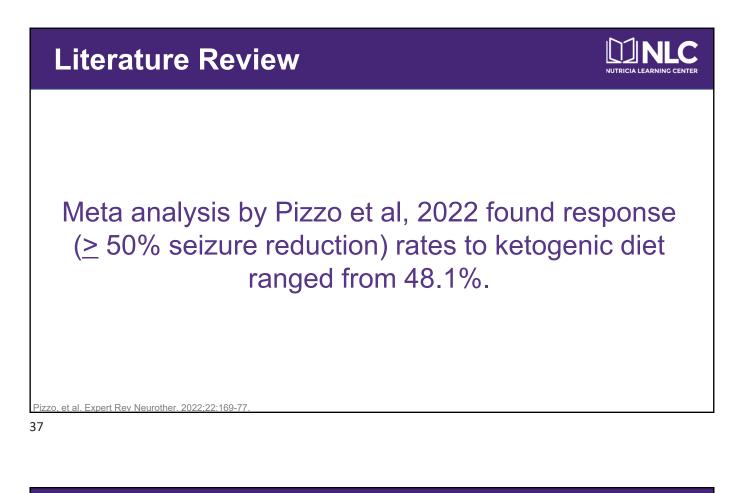

Ketogenic diet directly bypasses energy block

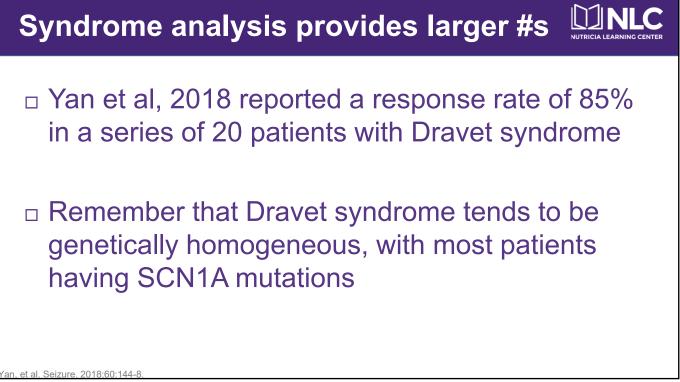


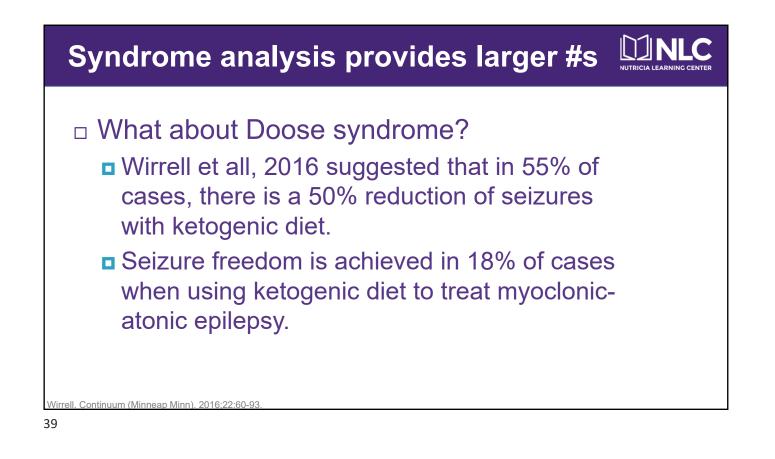

© 2022 Nutricia North America

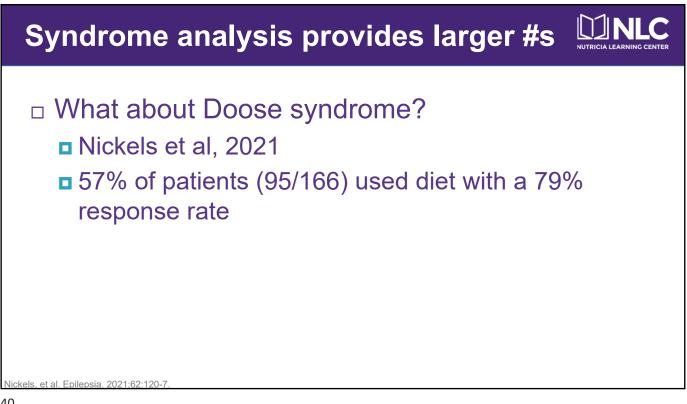

Mutation	Disease	Response to Keto	Complications	Citation
STXBP1	STXBP1-realted epileptic encephalopathy	4/12; Sz decrease		Nam et al, 2022
		1/1; Sz decrease		Ünalp et al, 2022
PDHA1	Pyruvate dehydrogenase	2/2; Sz decrease		Inui et al, 2021
	complex deficiency	MRI improvement		Shelkowitz, 2020
DLD	Dihydrolipoamide dehydrogenase deficiency	16,Improved survival		Startetz-Chacham et al, 2021
EIF2S3	MEHMO: MR, sz, hypogonadism, microcephaly and obesity	1/1; Reduced sz, diabetes control	Died of necrotizing pancreatitis	Mori et al, 2021
		1/1: Sz decrease		Tian et al, 2021
SCN2A	Early-onset epileptic encephalopathies	1/1; Sz control		Turkdogan et al, 2018
		1/1; Sz control		Startetz-Chacham et al, 2021 Mori et al, 2021 Tian et al, 2021
CDKL5	CDKL deficiency disorder	1/29; Sz decrease		Kobayashi et al, 2020
ECHS1	Leigh-like disease, paroxysmal exercise induced dystonia	1/3; Improvement in abnormal movements		Illsinger et al, 2020

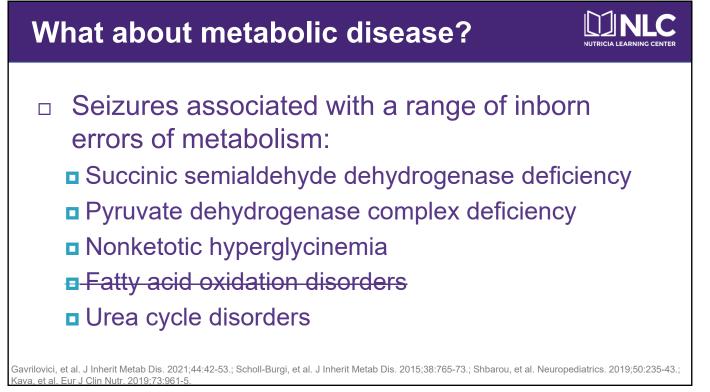

Mutation	Disease	Response to Keto	Complications	Citation
ALG13	Early infantile epileptic encephalopathy, disorder	12/29; improvement in sz		Ng et al, 2020
	of glycosylation	2/2; Seizure control		Paketci et al,2020
TSC	Tuberous sclerosis	21/31; >50% reduction in seizures		Youn et al, 2020
KCNT1	KCNT-1 related epilepsy	27 patients of whom, 14 tried keto With 57% having improved sz		Borlot et al, 2020
SCN1A	Dravet (in this study)	24 patients in whom, 3 tried keto All three had >50% reduction in sz		Fang et al, 2019
ATP1A3	Alternating hemiplegia of childhood with epileptic encephalopathy	1/1; seizure control		Schirinzi et al, 2018
PGK1	Phosphoglycerate kinase deficiency	1/1; no change	hemolysis	Baba et al, 2017

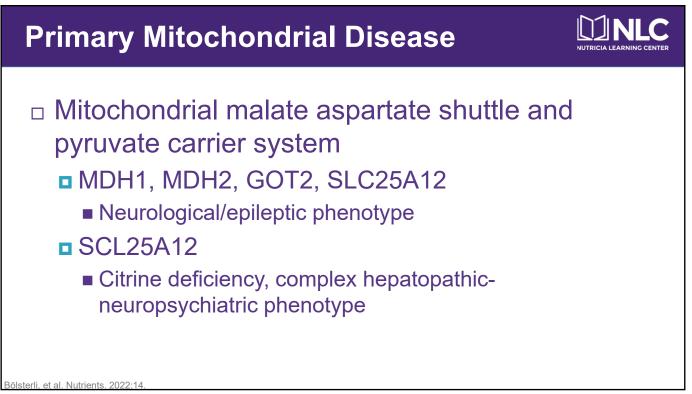


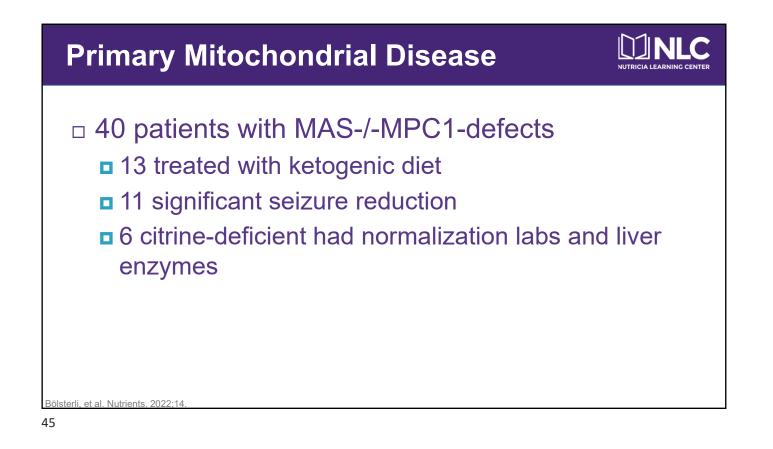


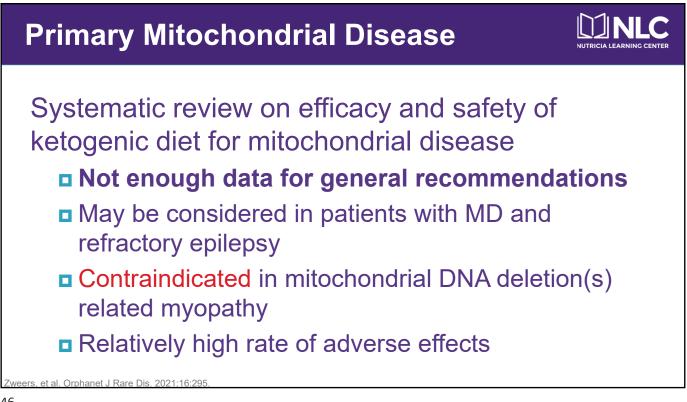


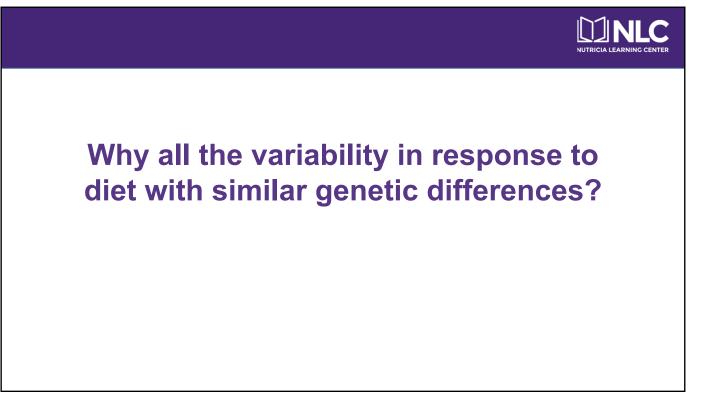


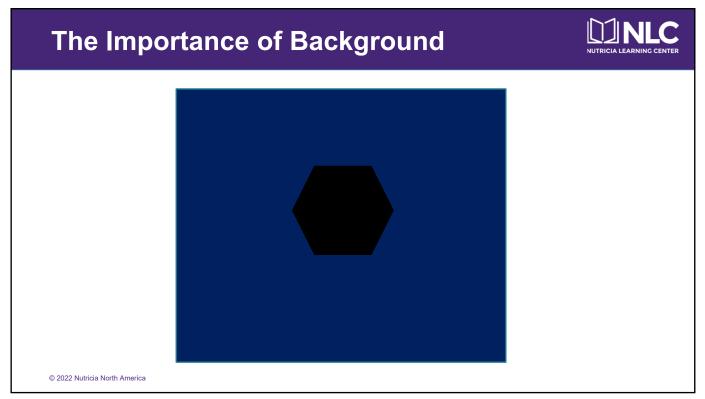


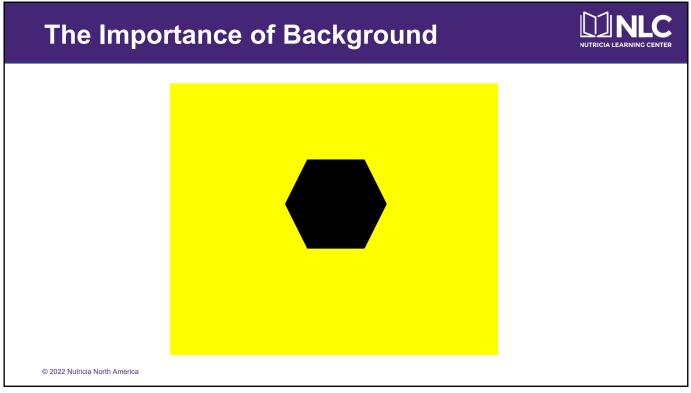

What about metabolic disease?

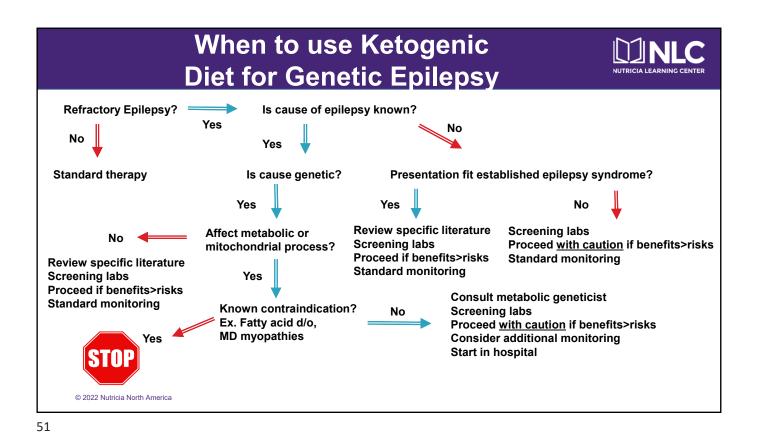

- Ketogenic diet has been used successfully, but response is highly variable.
- □ Contraindicated in fatty acid oxidation disorders
- Avoid catabolism!!

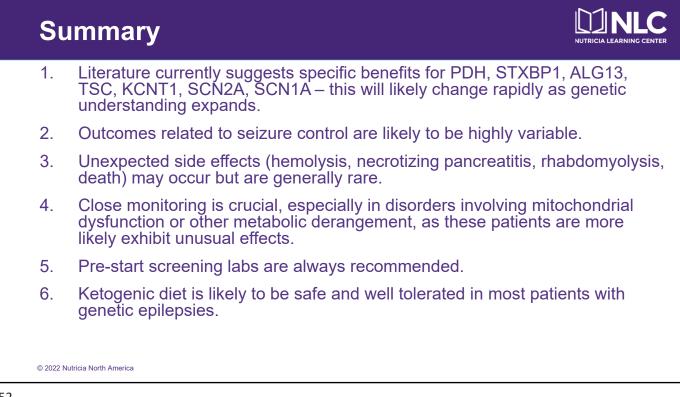



- Known or presumed genetic disorders caused by pathogenic variants in genes coding for the mitochondrial respiratory chain and related proteins
- Defect in respiratory chain, the essential final common pathway for aerobic metabolism


Chinnery PF. Primary Mitochondrial Disorders Overview. 2000 Jun 8 [Updated 2021 Jul 29]. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1224/



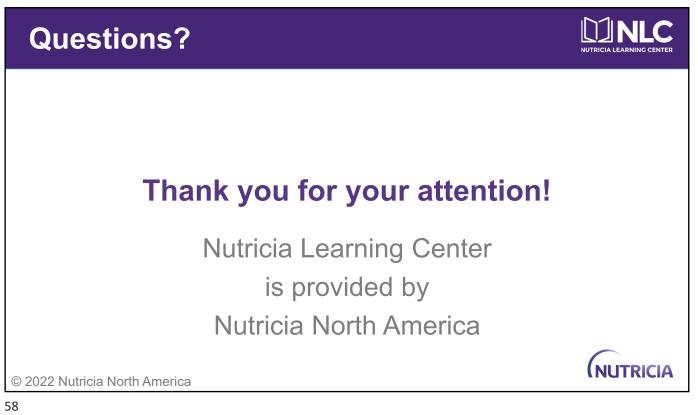




References

- "Genetic Disorders." NIH National Human Genome Research Institute. May 18, 2018. <u>https://www.genome.gov/For-Patients-and-Families/Genetic-Disorders</u> (accessed Oct. 25, 2022)
- Plaiasu V. Down Syndrome Genetics and Cardiogenetics. Maedica (Bucur). 2017;12:208-13.
- Wirrell E. Genetic Causes of Epilepsy. Epilepsy Foundation, <u>https://www.epilepsy.com/causes/genetic</u> (accessed Oct. 25, 2022)
- D Nikkola E, Shah V. Genetic Mechanisms of Epilepsy. Practical Neurology. 2019:56-9.
- Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:512-21.
- U Wirrell E. Infantile, Childhood, and Adolescent Epilepsies. Continuum (Minneap Minn). 2016;22:60-93.
- Hernandez A, Wirrell E. <u>https://www.epilepsy.com/what-is-epilepsy/syndromes/myoclonic-atonic-epilepsy-doose-syndrome</u>. Accessed October 25, 2022, Published November 23, 2019.
- Pearson TS, Akman C, Hinton VJ, et al. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13:342.
- Nam JY, Teng LY, Cho K, et al. Effects of the ketogenic diet therapy in patients with STXBP1-related encephalopathy. Epilepsy Res. 2022;186:106993.

© 2022 Nutricia North America


R	
	Ünalp A, Gazeteci Tekin H, Karaoğlu P, et al. Benefits of ketogenic diet in a pediatric patient with Ehlers-Danlos syndrome and STXBP1-related epileptic encephalopathy. Int J Neurosci. 2022;132:950-2.
	Inui T, Wada Y, Shibuya M, et al. Intravenous ketogenic diet therapy for neonatal-onset pyruvate dehydrogenase complex deficiency. Brain Dev. 2022;44:244-8.
	Shelkowitz E, Ficicioglu C, Stence N, et al. Serial Magnetic Resonance Imaging (MRI) in Pyruvate Dehydrogenase Complex Deficiency. J Child Neurol. 2020;35:137-45.
	Staretz-Chacham O, Pode-Shakked B, Kristal E, et al. The Effects of a Ketogenic Diet on Patients with Dihydrolipoamide Dehydrogenase Deficiency. Nutrients. 2021;13.
	Mori M, Kumada T, Inoue K, et al. Ketogenic diet for refractory epilepsy with MEHMO syndrome: Caution for acute necrotizing pancreatitis. Brain Dev. 2021;43:724-8.
	Tian X, Zhang Y, Zhang J, et al. Ketogenic Diet in Infants with Early-Onset Epileptic Encephalopathy and SCN2A Mutation. Yonsei Med J. 2021;62:370-3.
	Turkdogan D, Thomas G, Demirel B. Ketogenic diet as a successful early treatment modality for SCN2A mutation. Brain Dev. 2019;41:389-91.
	Su DJ, Lu JF, Lin LJ, et al. SCN2A mutation in an infant presenting with migrating focal seizures and infantile spasm responsive to a ketogenic diet. Brain Dev. 2018;40:724-7.
 © 202	2 Nutricia North America

References Kobayashi Y, Tohyama J, Takahashi Y, et al. Clinical manifestations and epilepsy treatment in Japanese patients with pathogenic CDKL5 variants. Brain Dev. 2021;43:505-14. Illsinger S, Korenke GC, Boesch S, et al. Paroxysmal and non-paroxysmal dystonia in 3 patients with biallelic ECHS1 variants: Expanding the neurological spectrum and therapeutic approaches. Eur J Med Genet. 2020;63:104046. Ng BG, Eklund EA, Shiryaev SA, et al. Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical П description, biomarker status, biochemical analysis, and treatment suggestions. J Inherit Metab Dis. 2020;43:1333-48. Paketci C, Edem P, Hiz S, et al. Successful treatment of intractable epilepsy with ketogenic diet therapy in twins with ALG3-CDG. Brain Dev. 2020;42:539-45. Youn SE, Park S, Kim SH, et al. Long-term outcomes of ketogenic diet in patients with tuberous sclerosis complex-derived epilepsy. Epilepsy Res. 2020;164:106348. Borlot F, Abushama A, Morrison-Levy N, et al. KCNT1-related epilepsy: An international multicenter cohort of 27 pediatric cases. П Epilepsia. 2020;61:679-92. Fang ZX, Hong SQ, Li TS, et al. Genetic and phenotypic characteristics of SCN1A-related epilepsy in Chinese children. Neuroreport. 2019;30:671-80. Schirinzi T, Graziola F, Cusmai R, et al. ATP1A3-related epileptic encephalopathy responding to ketogenic diet. Brain Dev. 2018;40:433-8. © 2022 Nutricia North America

	R	
		Baba S, Kobayashi A, Yokoyama H, et al. Slowly progressive leukodystrophy in an adolescent male with phosphoglycerate kinase deficiency. Brain Dev. 2018;40:150-4.
		Sourbron J, Klinkenberg S, van Kuijk SMJ, et al. Ketogenic diet for the treatment of pediatric epilepsy: review and meta-analysis. Childs Nerv Syst. 2020;36:1099-109.
		Pizzo F, Collotta AD, Di Nora A, et al. Ketogenic diet in pediatric seizures: a randomized controlled trial review and meta-analysis. Expert Rev Neurother. 2022;22:169-77.
		Yan N, Xin-Hua W, Lin-Mei Z, et al. Prospective study of the efficacy of a ketogenic diet in 20 patients with Dravet syndrome. Seizure. 2018;60:144-8.
		Wirrell E. Infantile, Childhood, and Adolescent Epilepsies. Continuum (Minneap Minn). 2016;22:60-93.
		Nickels K, Kossoff EH, Eschbach K, et al. Epilepsy with myoclonic-atonic seizures (Doose syndrome): Clarification of diagnosis and treatment options through a large retrospective multicenter cohort. Epilepsia. 2021;62:120-7.
		Gavrilovici C, Rho JM. Metabolic epilepsies amenable to ketogenic therapies: Indications, contraindications, and underlying mechanisms. J Inherit Metab Dis. 2021;44:42-53.
		Scholl-Burgi S, Holler A, Pichler K, et al. Ketogenic diets in patients with inherited metabolic disorders. J Inherit Metab Dis. 2015;38:765-73.
		Shbarou RM, Boustany RM, Daher RT, et al. Outcome of Nonketotic Hyperglycinemia in Lebanon: 14-Year Retrospective Review. Neuropediatrics. 2019;50:235-43.
	© 202	2 Nutricia North America
1		

R	References
	Kava MP, Robertson A, Greed L, et al. Ketogenic diet, a potentially valuable therapeutic option for the management of refractory epilepsy in classical neonatal nonketotic hyperglycinemia: a case report. Eur J Clin Nutr. 2019;73:961-5.
	Chinnery PF. Primary Mitochondrial Disorders Overview. 2000 Jun 8 [Updated 2021 Jul 29]. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1224/
	Bölsterli BK, Boltshauser E, Palmieri L, et al. Ketogenic Diet Treatment of Defects in the Mitochondrial Malate Aspartate Shuttle and Pyruvate Carrier. Nutrients. 2022;14.
	Zweers H, van Wegberg AMJ, Janssen MCH, et al. Ketogenic diet for mitochondrial disease: a systematic review on efficacy and safety. Orphanet J Rare Dis. 2021;16:295.
© 202	22 Nutricia North America

Feedback, Please! Certificate of Attendance	
 For those interested in obtaining a Certificate of Attendance: 1. For viewers of the live Webinar: a link to a survey will pop-up as you exit. 2. If not, please go to: <u>https://www.surveymonkey.com/r/KDGenetics</u> 3. Complete the survey and an event code will be available at the end of the survey. 	
 Go to www.NutriciaLearningCenter.com and enter the event code. Your certificate will be automatically downloaded to your NLC profile. 	
For question on this Webinar or Nutricia's products, please email: <u>NutritionServices@nutricia.com</u> or call: 1-800-365-7354 (option 2)	