Protein and Skeletal Muscle: Why Timing Matters

Presented by:
Douglas Paddon-Jones, Ph.D., FACSM

For call-in information, click the telephone icon towards the bottom left side of your screen.

The webinar will begin shortly.
Protein and Skeletal Muscle: Why Timing Matters

Douglas Paddon-Jones, Ph.D., FACSM
Sheridan Lorenz Distinguished Professor of Aging and Health
Department of Nutrition and Metabolism
University of Texas Medical Branch, Galveston, TX, USA

May 2, 2019
Disclosures

Funding / Scientific Advisory Boards / Speaker’s Bureau participation:

- Honorarium provided by Nutricia
- National Institutes of Health
- National Space Biomedical Research Institute
- National Dairy Council
- US Dairy Export Council
- National Cattlemens Beef Association
- Abbott Nutrition
- Agropur
- Leprino Foods
- Sabra Wellness -- None pose any conflict of interest for this presentation --

The opinions reflected in this presentation are those of the speaker and independent of Nutricia North America.
Learning Objectives

- Review major factors impacting skeletal muscle metabolism in adults.
- Highlight changes in skeletal muscle during aging and inactivity.
- Understand the impact and benefit of optimal protein distribution.
Conceptual Model:

- Inactivity
- Disease
- Inflammation
- Mitochondrial Dysfunction
- Inadequate Nutrition
- Aging
- Blood Flow

Muscle Loss
Conceptual Model:

- Inactivity
- Disease
- Inflammation
- Mitochondrial Dysfunction
- Inadequate Nutrition
- Aging
- Blood Flow

Muscle Loss

Protein

Activity

Pharmacology
How much protein do we need?

RDA: “estimate of the minimum daily average dietary intake level that meets the nutrient requirements of 97-98% of healthy individuals”
How much protein do we need?

RDA: “estimate of the minimum daily average dietary intake level that meets the nutrient requirements of 97-98% of healthy individuals”

→ 0.8 g of good quality protein / kg body weight / day
How much protein do we need?

RDA: “estimate of the minimum daily average dietary intake level that meets the nutrient requirements of 97-98% of healthy individuals”

→ 0.8 g of good quality protein / kg body weight / day
How much protein do we need?

RDA: “estimate of the minimum daily average dietary intake level that meets the nutrient requirements of 97-98% of healthy individuals”

→ 0.8 g of good quality protein / kg body weight / day
How much protein do we need?

RDA: “estimate of the minimum daily average dietary intake level that meets the nutrient requirements of 97-98% of healthy individuals”

→ 0.8 g of good quality protein / kg body weight / day
How much protein per meal do we need?

Symons TB et al. AJCN 2007; Symons TB et al. JADA 2009
How much protein per meal do we need?

-- a positive message of moderation --

Symons TB et al. AJCN 2007; Symons TB et al. JADA 2009
Synergistic effect of protein + exercise

Anabolic resistance: age-related dose response

Muscle Protein Synthesis (mg Phe/leg) > 25 g protein

Katsanos CS et al. AJCN 2005
Anabolic resistance: age-related dose response

Muscle Protein Synthesis (mg Phe/leg) for Young vs. Elderly.

Katsanos CS et al. AJCN 2005
Anabolic resistance: age-related dose response

Muscle Protein Synthesis (mg Phe/leg)

Young
Elderly

> 25 g protein
< 15 g protein

Katsanos CS et al. AJCN 2005
Anabolic resistance: age-related dose response

Muscle Protein Synthesis (mg Phe/leg)

> 25 g protein
< 15 g protein

Katsanos CS et al. AJCN 2005
Anabolic resistance: age-related dose response

Muscle Protein Synthesis (mg Phe/leg)

> 25 g protein

< 15 g protein

Young

Elderly

Katsanos CS et al. AJCN 2005
Concept: skewed vs. optimal protein distribution

Catabolism

10 g

Anabolism

15 g

~ maximum rate of protein synthesis

65 g

Consumed Protein

90 g

Concept: skewed vs. optimal protein distribution

- Consumed Protein 90 g
- Usable Protein 55 g

Concept: skewed vs. optimal protein distribution

Anabolism

Catabolism

~ maximum rate of protein synthesis

Consumed Protein: 90 g

Usable Protein: 90 g ?

Study: Even vs. skewed protein distribution

Sarcopenia

...... a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes such as physical disability, poor quality of life and death.

Cruz-Jentoft AJ et al. Age Ageing. 2010
Typical “uncomplicated” sarcopenia model?
Catabolic crisis model

Obstacles → Opportunities

Paddon-Jones et al. Curr Opin Nutr Metab Care. 2010
Physical inactivity: clinical settings

- Inactive (0 steps/min)
- Low Activity (< 15 steps/min)
Physical inactivity: research models

Loss of lean leg mass (g)

Young

28 Days

English KL et al. AJCN 2015
Loss of lean leg mass (g)

Young

-250

28 Days

Older

-500

10 Days
Physical inactivity: research models

Loss of lean leg mass (g)

-2000 -1500 -1000 -750 -500 -250 0

Young Middle-aged Older

28 Days 14 Days 10 Days

English KL et al. AJCN 2015
Physical inactivity: research models

English KL et al. AJCN 2015

Loss of lean leg mass (g)

|-------------------- best case situation----------------------|

Young Middle-aged Older

- 28 Days 14 Days 10 Days
Physical inactivity: research models

English KL et al. AJCN 2015
Intervention opportunity: inpatient diets

Paddon-Jones pilot data

Presented
Consumed

grams

Protein
Carbohydrate
Fat

per meal

Paddon-Jones pilot data
Intervention opportunity: inpatient diets

Paddon-Jones pilot data

[Bar chart showing the comparison between presented and consumed grams of Protein, Carbohydrate, and Fat per meal.]

Presented
Consumed

Protein
Carbohydrate
Fat

grams

0
20
40
60
80
100

Per meal

Paddon-Jones pilot data
Intervention opportunity: inpatient diets

Paddon-Jones pilot data

Presented vs. Consumed

Protein, Carbohydrate, Fat per meal

grams

[Graph showing comparison between presented and consumed protein, carbohydrate, and fat per meal]

Paddon-Jones pilot data
Physical inactivity: age and sex-specificity

Change in lean leg mass (g)

Disuse

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Middle-age</th>
<th>Older</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>-1000</td>
<td>-1500</td>
</tr>
<tr>
<td>Women</td>
<td>-2500</td>
<td>-3000</td>
</tr>
</tbody>
</table>

Rehabilitation

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Middle-age</th>
<th>Older</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

English KL et al. AJCN 2015
Physical inactivity: age and sex-specificity

English KL et al. AJCN 2015
Physical inactivity: responders & non-responders

Paddon-Jones et al. pilot data

Loss in leg lean mass (g): 7-days

-2500
-2000
-1500
-1000
-500
0

Mid: -1207 g
Low: -537 g
High: -1876 g

Tertiles of leg lean mass loss

Count
2
4
6
8
Leucine:
- Branch chain amino acid (BCAA)
- common in most high quality proteins
- key regulatory role in protein synthesis
- overstated benefits?
Leucine (4 g/meal): partially protects muscle function

Healthy middle-age adults
14 days bed rest

English KL et al. AJCN 2015
Leucine: partially / temporarily protects muscle mass

Healthy middle-age adults
14 days bed rest

English KL et al. AJCN 2015
Leucine: partially / temporarily protects muscle mass

Healthy middle-age adults
14 days bed rest
What about physical activity?

- Muscle mass
- Muscle endurance
- Aerobic capacity
- Muscle strength

Percentage change %

7 days bed rest (control)

What about physical activity?

<table>
<thead>
<tr>
<th></th>
<th>Muscle mass</th>
<th>Muscle endurance</th>
<th>Aerobic capacity</th>
<th>Muscle strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 days bed rest (control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018 ± 4 steps/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 ± 1 minutes/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155 ± 8 minutes/week</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94 ± 4 steps/minute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 ± 5 bpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 days bed rest + 2000 steps / day
What about physical activity?

<table>
<thead>
<tr>
<th></th>
<th>Muscle mass</th>
<th>Muscle endurance</th>
<th>Aerobic capacity</th>
<th>Muscle strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 days bed rest</td>
<td>-10%</td>
<td>-15%</td>
<td>-10%</td>
<td>-20%</td>
</tr>
<tr>
<td>7 days bed rest + 2000 steps / day</td>
<td>-20%</td>
<td>-25%</td>
<td>-20%</td>
<td>-30%</td>
</tr>
</tbody>
</table>

2018 ± 4 steps/day
22 ± 1 minutes/day
155 ± 8 minutes/week
94 ± 4 steps/minute
102 ± 5 bpm

What about physical activity?

<table>
<thead>
<tr>
<th>Measure</th>
<th>Control</th>
<th>7 days bed rest + 2000 steps / day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle mass</td>
<td>-15 ± 5 steps/minute</td>
<td>0 steps/minute</td>
</tr>
<tr>
<td>Muscle endurance</td>
<td>-10 ± 2 minutes/day</td>
<td>155 ± 8 minutes/week</td>
</tr>
<tr>
<td>Aerobic capacity</td>
<td>-2 ± 1 minutes/day</td>
<td>102 ± 5 bpm</td>
</tr>
</tbody>
</table>

2018 ± 4 steps/day
22 ± 1 minutes/day
155 ± 8 minutes/week
94 ± 4 steps/minute
102 ± 5 bpm
What about physical activity?

<table>
<thead>
<tr>
<th></th>
<th>Muscle mass</th>
<th>Muscle endurance</th>
<th>Aerobic capacity</th>
<th>Muscle strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 days bed rest (control)</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>7 days bed rest + 2000 steps / day</td>
<td>-10.00 ± 0.00</td>
<td>-10.00 ± 0.00</td>
<td>-10.00 ± 0.00</td>
<td>-10.00 ± 0.00</td>
</tr>
</tbody>
</table>

- 2018 ± 4 steps/day
- 22 ± 1 minutes/day
- 155 ± 8 minutes/week
- 94 ± 4 steps/minute
- 102 ± 5 bpm
What about physical activity?

- Muscle mass
- Muscle endurance
- Aerobic capacity
- Muscle strength

<table>
<thead>
<tr>
<th></th>
<th>7 days bed rest (control)</th>
<th>7 days bed rest + 2000 steps / day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle mass</td>
<td>-10 ± 3</td>
<td>-15 ± 4</td>
</tr>
<tr>
<td>Muscle endurance</td>
<td>-20 ± 4</td>
<td>-20 ± 5</td>
</tr>
<tr>
<td>Aerobic capacity</td>
<td>-15 ± 1</td>
<td>-15 ± 1</td>
</tr>
<tr>
<td>Muscle strength</td>
<td>-20 ± 2</td>
<td>-20 ± 2</td>
</tr>
</tbody>
</table>

- 2018 ± 4 steps/day
- 22 ± 1 minutes/day
- 155 ± 8 minutes/week
- 94 ± 4 steps/minute
- 102 ± 5 bpm
Recommendations: **Prevention** and Treatment

For **all** healthy adults….

Establish a dietary framework that includes a **moderate** amount of **high quality** protein at **each meal**.

Modify as necessary to accommodate individual needs:
- **energy requirements**
- **physical activity**
- **health status**
- **body composition goals**
- **dentition, satiety**
During periods of catabolic crisis or inactivity:

- 0.8 g protein/kg/day is insufficient

- Blunt addition of protein/energy is inefficient

- Aggressive support with high quality protein (whey/leucine) and activity may help preserve muscle health
Acknowledgements

- Emily Arentson-Lantz
- Adam Wacher
- Elena Volpi
- Blake Rasmussen
- Heather Leidy
- Thomas Lang
- Wayne Campbell
- Don Layman
Questions?

Please type them in the Q&A box on the bottom right side of your screen
To receive your CEU/CE certificate:

1) Complete the webinar survey at: https://www.surveymonkey.com/r/VCPRT22

2) Once webinar code is obtained, visit www.NutriciaLearningCenter.com and click on ‘CE Credit Request’
 **If you have not previously registered for NLC, you will need to register to obtain your CE certificate

3) Enter the webinar code obtained

4) Certificate will be visible for download on your NLC dashboard

For question on this Webinar, please email: NutritionServices@nutricia.com or call: 1-800-365-7354
Thank you!

Nutricia Learning Center is provided by Nutricia North America